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Maximum Flow and Minimum Cut

I Two rich algorithmic problems.

I Fundamental problems in combinatorial optimization.

I Beautiful mathematical duality between flows and cuts.

I Numerous non-trivial applications:

I Bipartite matching.

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination.

I Image segmentation.

I Network connectivity.

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene reconstruction.

I Gene function prediction.

I We will only sketch proofs. Read details from the textbook.
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Matching in Bipartite Graphs

I Bipartite Graph: a graph G (V , E ) where

1. V = X ∪ Y , X and Y are disjoint and
2. E ⊆ X × Y .

I Bipartite graphs model situations in which objects are matched with or
assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

I A matching in a bipartite graph G is a set M ⊆ E of edges such that each
node of V is incident on at most edge of M.

I A set of edges M is a perfect matching if every node in V is incident on
exactly one edge in M.
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Bipartite Graph Matching Problem

Bipartite Matching

INSTANCE: A Bipartite graph G .

SOLUTION: The matching of largest size in G .
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Algorithm for Bipartite Graph Matching

I Convert G to a flow network G ′: direct edges from X to Y , add nodes s and
t, connect s to each node in X , connect each node in Y to t, set all edge
capacities to 1.

I Compute the maximum flow in G ′.

I Claim: the value of the maximum flow is the size of the maximum matching.
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Correctness of Bipartite Graph Matching Algorithm

I Matching → flow: if there is a matching with k edges in G , there is an s-t
flow of value k in G ′.

I Flow → matching: if there is an integer-valued flow f ′ in G ′ with value k,
there is a matching M in G with k edges.

I There is an integer-valued flow f of value k ⇒ flow along any edge is 0 or 1.
I Let M be the set of edges not incident on s or t with flow equal to 1.
I Claim: M contains k edges.
I Claim: Each node in X (respectively, Y ) is the tail (respectively, head) of at

most one edge in M.

I Conclusion: size of the maximum matching in G is equal to the value of the
maximum flow in G ′; the edges in this matching are those that carry flow
from X to Y in G ′.

I Read the book on what augmenting paths mean in this context.
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Running time of Bipartite Graph Matching Algorithm

I Suppose G has m edges and n nodes in X and in Y .

I C ≤ n.

I Ford-Fulkerson algorithm runs in O(mn) time.
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Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching?

Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff

the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .

I For example, two nodes in X with one incident edge each with the same
neighbour in Y .

I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.
I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.

Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .

I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.
I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.

Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time.

Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching? Find
the maximum matching and check if it is perfect.

I Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact?

I What can such certificates look like?

I G has no perfect matching iff the maximum capacity of a cut in G ′ is less
than n. Therefore, the cut is a certificate.

I But we would like the certificate in terms of G .
I For example, two nodes in X with one incident edge each with the same

neighbour in Y .
I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y , E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ X such that
|A| > |Γ(A)|. A perfect matching or such a subset can be computed in
O(mn) time. Read proof in the textbook.

T. M. Murali November 16, 18, 2009 CS 4104: Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Edge-Disjoint Paths

I A set of paths in a graph G is edge disjoint if each edge in G appears in at
most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph G (V , E ) with two distinguished nodes s
and t.

SOLUTION: The maximum number of edge-disjoint paths between s
and t.
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Mapping to the Max-Flow Problem

I Convert G into a flow network: s is the source, t is the sink, each edge has
capacity 1.

I Paths → flow: if there are k edge-disjoint paths from s to t, send one unit of
flow along each to yield a flow with value k.

I Flow → paths: Suppose there is an integer-valued flow of value k. Are there
k edge-disjoint paths? If so, what are they?

I Construct k edge-disjoint paths from a flow of value ≥ k.
I There is an integral flow. Therefore, flow on each edge is 0 or 1.
I Claim: if f is a 0-1 valued flow of value ν, then the set of edges with flow

f (e) = 1 contains a set of ν edge-disjoint paths.
I Prove by induction on the number of edges in f that carry flow.

I We just proved: there are k edge-disjoint paths from s to t in a directed
graph G iff the maximum value of an s-t flow in G is ≥ k.
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I Construct k edge-disjoint paths from a flow of value ≥ k.
I There is an integral flow. Therefore, flow on each edge is 0 or 1.
I Claim: if f is a 0-1 valued flow of value ν, then the set of edges with flow

f (e) = 1 contains a set of ν edge-disjoint paths.
I Prove by induction on the number of edges in f that carry flow.

I We just proved: there are k edge-disjoint paths from s to t in a directed
graph G iff the maximum value of an s-t flow in G is ≥ k.
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Running Time of the Edge-Disjoint Paths Algorithm

I Given a flow of value k, how quickly can we determine the k edge-disjoint
paths?

O(mn) time.

I Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set
of edge-disjoint s-t paths in a directed graph G in O(mn) time.
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Certificate for Edge-Disjoint Paths Algorithm

I A set F ⊆ E of edge separates s and t if the graph (V , E − F ) contains no
s-t paths.

I Menger’s Theorem: In every directed graph with nodes s and t, the
maximum number of edge-disjoint s-t paths is equal to the minimum number
of edges whose removal disconnects s from t.
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Edge-Disjoint Paths in Undirected Graphs

I Can extend the theorem to undirected graphs.

I Replace each edge with two directed edges of capacity 1 and apply the
algorithm for directed graphs.

I Problem: Both counterparts of an undirected edge (u, v) may be used by
different edge-disjoint paths in the directed graph.

I Can obtain an integral flow where only one of the directed counterparts of
(u, v) has non-zero flow.

I We can find the maximum number of edge-disjoint paths in O(mn) time.

I We can prove a version of Menger’s theorem for undirected graphs: in every
undirected graph with nodes s and t, the maximum number of edge-disjoint
s–t paths is equal to the minimum number of edges whose removal separates
s from t.
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Image Segmentation

I A fundamental problem in computer vision is that of segmenting an image
into coherent regions.

I A basic segmentation problem is that of partitioning an image into a
foreground and a background: label each pixel in the image as belonging to
the foreground or the background.
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Formulating the Image Segmentation Problem

I Let V be the set of pixels in an image.

I Let E be the set of pairs of neighbouring pixels.

I V and E yield an undirected graph G (V , E ).

I Each pixel i has a likelihood ai > 0 that it belongs to the foreground and a
likelihood bi > 0 that it belongs to the background.

I These likelihoods are specified in the input to the problem.

I We want the foreground/background boundary to be smooth: For each pair
(i , j) of pixels, assign separation penalty pij ≥ 0 for placing one of them in
the foreground and the other in the background.
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The Image Segmentation Problem

Image Segmentation

INSTANCE: Pixel graphs G (V , E ), likelihood functions a, b : V → R+,
penalty function p : E → R+

SOLUTION: Optimum labelling: partition of the pixels into two sets A
and B that maximises

q(A, B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E
|A∩{i,j}|=1

pij .
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Developing an Algorithm for Image Segmentation

I There is a similarity between cuts and labellings.

I But there are differences:
I We are maximising an objective function rather than minimising it.
I There is no source or sink in the segmentation problem.
I We have values on the nodes.
I The graph is undirected.
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Maximization to Minimization

I Let Q =
∑

i (ai + bi ).

I Notice that
∑

i∈A ai +
∑

j∈B bj = Q −
∑

i∈A bi +
∑

j∈B aj .

I Therefore, maximising

q(A, B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E
|A∪{i,j}|=1

pij

= Q −
∑
i∈A

bi −
∑
j∈B

aj −
∑

(i,j)∈E
|A∩{i,j}|=1

pij

is identical to minimising

q′(A, B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E
|A∩{i,j}|=1

pij
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Solving the Other Issues

I Solve the issues like we did earlier.

I Add a new “super-source” s to
represent the foreground.

I Add a new “super-sink” t to
represent the background.

I Connect s and t to every pixel and
assign capacity ai to edge (s, i) and
capacity bi to edge (i , t).

I Direct edges away from s and into t.

I Replace each edge (i , j) in E with
two directed edges of capacity pij .
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Cuts in the Flow Network

I Let G ′ be this flow network and
(A, B) an s-t cut.

I What does the capacity of the cut
represent?

I Edges crossing the cut are of three
types:

I (s,w),w ∈ B contributes aw .
I (u, t), u ∈ A contributes bu.
I (u,w), u ∈ A,w ∈ B contributes

puw .

c(A, B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E
|A∩{i,j}|=1

pij = q′(A, B).
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Solving the Image Segmentation Problem

I The capacity of a s-t cut c(A, B) exactly measures the quantity q′(A, B).

I To maximise q(A, B), we simply compute the s-t cut (A, B) of minimum
capacity.

I Deleting s and t from the cut yields the desired segmentation of the image.
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