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Divide and Conquer

I Break up a problem into several parts.

I Solve each part recursively.

I Solve base cases by brute force.

I Efficiently combine solutions for sub-problems into final solution.

I Common use:
I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).
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Mergesort

Sort

INSTANCE: Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.
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Merging Two Sorted Lists

I Merge two sorted lists A = a1, a2, . . . , ak and B = b1, b2, . . . bl .

1. Maintain a current pointer for each list.
2. Initialise each pointer to the front of its list.
3. While both lists are nonempty:

3.1 Let ai and bj be the elements pointed to by the current pointers.
3.2 Append the smaller of the two to the output list.
3.3 Advance the current pointer in the list that the smaller element belonged to.

4. Append the rest of the non-empty list to the output.

I Running time of this algorithm is O(k + l).
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Analysing Mergesort

1. Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements (T (n)) ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

I Assume n is a power of 2.
T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

I Three ways of solving this recurrence relation:
1. “Unroll” the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to determine the

constants.
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Unrolling the recurrence

I Recursion tree has log n levels.

I Total work done at each level is cn.

I Running time of the algorithm is cn log n.

I Use this method only to get an idea of the solution.
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Substituting a Solution into the Recurrence

I Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
I Use induction to check if the solution satisfies the recurrence relation.

I Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
I Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n. Therefore,

T (n/2) ≤ (cn/2) log(n/2).
I Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

I Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?
I Why is T (n) ≤ kn2 a “loose” bound?
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Partial Substitution

I Guess that the solution is kn log n (logarithm to the base 2).

I Substitute guess into the recurrence relation to check what value of k will
satisfy the recurrence relation.

I k ≥ c will work.
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Proof for All Values of n

I We assumed n is a power of 2.

I How do we generalise the proof?

I Basic axiom: T (n) ≤ T (n + 1), for all n: worst case running time increases
as input size increases.

I Let m be the smallest power of 2 larger than n.

I T (n) ≤ T (m) = O(m log m) = O(n log n), because m ≤ 2n.
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Other Recurrence Relations

I Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct
cases: q = 1 and q > 2.

I Divide into two sub-problems of size n/2 and merge in O(n2) time.
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T (n) = qT (n/2) + cn, q = 1

I Each invocation reduces the problem size by a factor of 2 ⇒ there are log n
levels in the recursion tree.

I At level i of the tree, the problem size is n/2i and the work done is cn/2i .
I Therefore, the total work done is

i=log n∑
i=0

cn

2i
= O(n).
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T (n) = qT (n/2) + cn, q > 2

I There are log n levels in the recursion tree.

I At level i of the tree, there are qi sub-problems, each of size n/2i .

I The total work done at level i is qicn/2i .

I Therefore, the total work done is

T (n) ≤
i=log n∑

i=0

qi cn

2i
≤ O(nlog2 q).
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T (n) = 2T (n/2) + cn2

I Total work done is
i=log n∑

i=0

2i
(cn

2i

)2

≤

O(n2).
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