Graphs

T. M. Murali

September 2, 7, 9 2009
Graphs

- Model pairwise relationships (edges) between objects (nodes).
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, ...
- Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, ...
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, . . .
- Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, . . .
- Problems involving graphs have a rich history dating back to Euler.
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, ...
- Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, ...
- Problems involving graphs have a rich history dating back to Euler.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as $e = (u, v)$ and not as $e = \{u, v\}$.
 - Say that edge e is *incident* on u and on v.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as $e = (u, v)$ and not as $e = \{u, v\}$.
 - Say that edge e is *incident* on u and on v.

- **Directed graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are ordered pairs.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as $e = (u, v)$ and not as $e = \{u, v\}$.
 - Say that edge e is *incident* on u and on v.

- **Directed graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are ordered pairs.
 - $e = (u, v)$: u is the *head* of the edge e, v is its *tail*; e *leaves* node u and *enters* node v.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as $e = (u, v)$ and not as $e = \{u, v\}$.
 - Say that edge e is *incident* on u and on v.
- **Directed graph** $G = (V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are ordered pairs.
 - $e = (u, v)$: u is the *head* of the edge e, v is its *tail*; e *leaves* node u and *enters* node v.
- By default, “graph” will mean an “undirected graph”.
Paths and Connectivity

- **Path** in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.
 - P is called a path *from* v_1 *to* v_k or a v_1-v_k path.
- A path is *simple* if all its nodes are distinct.
- A *cycle* is a path where $k > 2$, the first $i - 1$ nodes are distinct, and $v_1 = v_k$.

![Figure 3.1](image1.png)

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

![Figure 3.2](image2.png)

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.
Path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.

- P is called a path from v_1 to v_k or a v_1-v_k path.

- A path is *simple* if all its nodes are distinct.

- A *cycle* is a path where $k > 2$, the first $i - 1$ nodes are distinct, and $v_1 = v_k$.
 - All definitions carry over to directed graphs as well.
Paths and Connectivity

Path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.

- P is called a path from v_1 to v_k or a v_1-v_k path.

A path is simple if all its nodes are distinct.

A cycle is a path where $k > 2$, the first $i - 1$ nodes are distinct, and $v_1 = v_k$.

- All definitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes $u, v \in V$, there is a path from u to v in G.

- Directed graphs have the notion of “strong connectivity.”
Paths and Connectivity

- **Path** in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.
 - P is called a path from v_1 to v_k or a v_1-v_k path.
- A path is **simple** if all its nodes are distinct.
- A **cycle** is a path where $k > 2$, the first $i - 1$ nodes are distinct, and $v_1 = v_k$.
 - All definitions carry over to directed graphs as well.
- An undirected graph G is **connected** if for every pair of nodes $u, v \in V$, there is a path from u to v in G.
 - Directed graphs have the notion of “strong connectivity.”
- The **distance** between two nodes u and v is the minimum number of edges in a u-v path.

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.
An undirected graph is a *tree* if it is connected and does not contain a cycle.
An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
Trees

An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

Rooting a tree T: pick some node r in the tree and orient each edge of T “away” from r, i.e., for each node $v \neq r$, define *parent* of v to be the node u that directly precedes v on the path from r to v.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.
An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

Rooting a tree T: pick some node r in the tree and orient each edge of T “away” from r, i.e., for each node $v \neq r$, define *parent* of v to be the node u that directly precedes v on the path from r to v.

- Node w is a *child* of node v if v is a parent of w.
- Node w is a *descendant* of node v (or v is an *ancestor* of w) if v lies on the r-w path.
- Node x is a *leaf* if it has no descendants.
An undirected graph is a **tree** if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

Rooting a tree T: pick some node r in the tree and orient each edge of T “away” from r, i.e., for each node $v \neq r$, define *parent* of v to be the node u that directly precedes v on the path from r to v.

- Node w is a **child** of node v if v is a parent of w.
- Node w is a **descendant** of node v (or v is an **ancestor** of w) if v lies on the r-w path.
- Node x is a **leaf** if it has no descendants.

Examples of (rooted) trees:

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.
Trees

- An undirected graph is a **tree** if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

- **Rooting** a tree T: pick some node r in the tree and orient each edge of T “away” from r, i.e., for each node $v \neq r$, define *parent* of v to be the node u that directly precedes v on the path from r to v.
 - Node w is a **child** of node v if v is a parent of w.
 - Node w is a **descendant** of node v (or v is an **ancestor** of w) if v lies on the r-w path.
 - Node x is a **leaf** if it has no descendants.

- Examples of (rooted) trees: organisational hierarchy, a department’s web pages, class hierarchies in object-oriented languages.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.
Claim: every n-node tree has $n - 1$ edges.
Number of Edges in a Tree

- Claim: every \(n \)-node tree has exactly \(n - 1 \) edges.
- Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has \(n - 1 \) edges.
Number of Edges in a Tree

- Claim: every n-node tree has exactly $n - 1$ edges.
- Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has $n - 1$ edges.
- Stronger claim: Let G be an undirected graph on n nodes. Any two of the following statements implies the third:
 1. G is connected.
 2. G does not contain a cycle.
 3. G contains $n - 1$ edges.
Number of Edges in a Tree

Claim: every n-node tree has exactly $n - 1$ edges.

Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has $n - 1$ edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains $n - 1$ edges.

1 and 2 \Rightarrow 3:
Number of Edges in a Tree

- **Claim**: every n-node tree has exactly $n - 1$ edges.
- **Proof**: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has $n - 1$ edges.
- **Stronger claim**: Let G be an undirected graph on n nodes. Any two of the following statements implies the third:
 1. G is connected.
 2. G does not contain a cycle.
 3. G contains $n - 1$ edges.

 - 1 and 2 \Rightarrow 3: just proved.
 - 2 and 3 \Rightarrow 1:
Claim: every \(n \)-node tree has exactly \(n - 1 \) edges.

Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has \(n - 1 \) edges.

Stronger claim: Let \(G \) be an undirected graph on \(n \) nodes. Any two of the following statements implies the third:

1. \(G \) is connected.
2. \(G \) does not contain a cycle.
3. \(G \) contains \(n - 1 \) edges.

1 and 2 \(\Rightarrow \) 3: just proved.

2 and 3 \(\Rightarrow \) 1: prove by contradiction.

3 and 1 \(\Rightarrow \) 2: prove yourself.
s-t Connectivity

INSTANCE: An undirected graph $G = (V, E)$ and two nodes $s, t \in V$.

QUESTION: Is there an s-t path in G?

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.
s-t Connectivity

INSTANCE: An undirected graph $G = (V, E)$ and two nodes $s, t \in V$.

QUESTION: Is there an s-t path in G?

- The *connected component of G containing s* is the set of all nodes u such that there is an s-u path in G.

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.
s-t Connectivity

INSTANCE: An undirected graph $G = (V, E)$ and two nodes $s, t \in V$.

QUESTION: Is there an s-t path in G?

- The *connected component of G containing s* is the set of all nodes u such that there is an s-u path in G.
- Algorithm for the s-t Connectivity problem: compute the connected component of G that contains s and check if t is in that component.

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.
Computing Connected Components

- “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially $R = \{s\}$

While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R

Endwhile
Computing Connected Components

- “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially $R = \{s\}$

While there is an edge (u, v) where $u \in R$ and $v \notin R$

 Add v to R

Endwhile

- How do we implement the while loop?
Computing Connected Components

➤ “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially $R=\{s\}$

While there is an edge (u, v) where $u \in R$ and $v \notin R$
 ➤ Add v to R

Endwhile

➤ How do we implement the while loop? Examine each edge in E.
Computing Connected Components

- “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially $R = \{s\}$

While there is an edge (u, v) where $u \in R$ and $v \notin R$
 - Add v to R

Endwhile

- How do we implement the while loop? Examine each edge in E.
- Issues to consider:
 - Why does the algorithm terminate?
 - Does the algorithm truly compute connected component of G containing s?
 - What is the running time of the algorithm?
Termination of the Connected Components Algorithm

R will consist of nodes to which s has a path

Initially $R = \{s\}$

While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- How many nodes does each iteration of the while loop add to R?
Termination of the Connected Components Algorithm

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- How many nodes does each iteration of the while loop add to R? Exactly 1.
- How many times is the while loop executed?
Termination of the Connected Components Algorithm

R will consist of nodes to which s has a path
Initially \(R = \{s\} \)

While there is an edge \((u, v)\) where \(u \in R \) and \(v \notin R \)
 Add \(v \) to \(R \)
Endwhile

- How many nodes does each iteration of the while loop add to \(R \)? Exactly 1.
- How many times is the while loop executed? At most \(n \) times:
 - either \(R = V \) at the end or
 - in the last iteration, every edge either has both nodes in \(R \) or both nodes not in \(R \).
Correctness of the Connected Components Algorithm

Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.
Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.

Proof: Suppose $w \not\in R$ but there is an s-w path P in G.

- Consider first node v in P not in R ($v \neq s$).
- Let u be the predecessor of v in P:
Correctness of the Connected Components Algorithm

Claim: at the end of the algorithm, the set \(R \) is exactly the connected component of \(G \) containing \(s \).

Proof: Suppose \(w \not\in R \) but there is an \(s-w \) path \(P \) in \(G \).

\[\begin{align*}
\text{Consider first node } v \text{ in } P \text{ not in } R \; (v \not= s). \\
\text{Let } u \text{ be the predecessor of } v \text{ in } P: \; u \text{ is in } R. \\
\text{(u, v) is an edge with } u \in R \text{ but } v \not\in R, \text{ contradicting the stopping rule.}
\end{align*} \]
Recovering Paths

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- Given a node $t \in R$, how do we recover the s-t path?
Recovering Paths

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- Given a node $t \in R$, how do we recover the $s-t$ path?
- When adding node v to R, record the edge (u, v).
- What type of graph is formed by these edges?
Recovering Paths

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- Given a node $t \in R$, how do we recover the s-t path?
- When adding node v to R, record the edge (u, v).
- What type of graph is formed by these edges? It is a tree! Why?
Recovering Paths

Let \(R \) will consist of nodes to which \(s \) has a path.
Initially \(R = \{s\} \)
While there is an edge \((u, v)\) where \(u \in R \) and \(v \notin R \)
 Add \(v \) to \(R \)
Endwhile

- Given a node \(t \in R \), how do we recover the \(s-t \) path?
- When adding node \(v \) to \(R \), record the edge \((u, v)\).
- What type of graph is formed by these edges? It is a tree! Why?
- To recover the \(s-t \) path, trace these edges backwards from \(t \) until we reach \(s \).
Running Time of the Connected Components Algorithm

\[R \] will consist of nodes to which \(s \) has a path
Initially \(R = \{s\} \)
While there is an edge \((u, v)\) where \(u \in R \) and \(v \notin R \)
 Add \(v \) to \(R \)
Endwhile
Running Time of the Connected Components Algorithm

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u,v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- Implement the while loop by examining each edge in E. Running time of each loop is
Running Time of the Connected Components Algorithm

R will consist of nodes to which s has a path
Initially R = {s}
While there is an edge \((u, v)\) where \(u \in R\) and \(v \notin R\)
 Add \(v\) to \(R\)
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes \(n\) and the number of edges \(m\).
- Implement the while loop by examining each edge in \(E\). Running time of each loop is \(O(m)\).
- How many while loops does the algorithm execute?
Running Time of the Connected Components Algorithm

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- Implement the while loop by examining each edge in E. Running time of each loop is $O(m)$.
- How many while loops does the algorithm execute? At most n.
- The running time is $O(mn)$.
Running Time of the Connected Components Algorithm

\[R \text{ will consist of nodes to which } s \text{ has a path} \]

Initially \(R = \{s\} \)

While there is an edge \((u, v)\) where \(u \in R \) and \(v \notin R \)

- Add \(v \) to \(R \)

Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes \(n \) and the number of edges \(m \).
- Implement the while loop by examining each edge in \(E \). Running time of each loop is \(O(m) \).
- How many while loops does the algorithm execute? At most \(n \).
- The running time is \(O(mn) \).
Running Time of the Connected Components Algorithm

\[R \text{ will consist of nodes to which } s \text{ has a path} \]

Initially \(R = \{s\} \)

While there is an edge \((u, v)\) where \(u \in R\) and \(v \notin R\)

 Add \(v \) to \(R \)

Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes \(n \) and the number of edges \(m \).
- Implement the while loop by examining each edge in \(E \). Running time of each loop is \(O(m) \).
- How many while loops does the algorithm execute? At most \(n \).
- The running time is \(O(mn) \).
- Can we improve the running time by processing edges more carefully?
Breadth-First Search (BFS)

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

- Idea: explore \(G \) starting at \(s \) and going “outward” in all directions, adding nodes one layer at a time.
Breadth-First Search (BFS)

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

- Idea: explore G starting at s and going “outward” in all directions, adding nodes one layer at a time.
- Layer L_0 contains only s.
- Layer L_1 contains all neighbours of s.
- Given layers L_0, L_1, \ldots, L_j, layer L_{j+1} contains all nodes that
 1. do not belong to an earlier layer and
 2. are connected by an edge to a node in layer L_j.
Properties of BFS

- Claim: For each $j \geq 1$, layer L_j consists of all nodes
Properties of BFS

Claim: For each $j \geq 1$, layer L_j consists of all nodes exactly at distance j from S. Proof
Properties of BFS

- Claim: For each $j \geq 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.

- Claim: There is a path from s to t if and only if t is a member of some layer.
Properties of BFS

- Claim: For each $j \geq 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.

- Claim: There is a path from s to t if and only if t is a member of some layer.

- Let v be a node in layer L_{j+1} and u be the “first” node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v. Why is T a tree? It is connected. The number of edges in T is the number of nodes in all the layers minus 1. T is called the breadth-first search tree.
Properties of BFS

- Claim: For each $j \geq 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.
- Claim: There is a path from s to t if and only if t is a member of some layer.
- Let v be a node in layer L_{j+1} and u be the “first” node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v.
 - Why is T a tree?
Properties of BFS

- Claim: For each $j \geq 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.

- Claim: There is a path from s to t if and only if t is a member of some layer.

- Let v be a node in layer L_{j+1} and u be the “first” node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v.
 - Why is T a tree? It is connected. The number of edges in T is the number of nodes in all the layers minus 1.
 - T is called the *breadth-first search tree*.

Non-tree edge: an edge of G that does not belong to the BFS tree T.

Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_j, respectively, and let (x, y) be an edge of G. Then $|i - j| \leq 1$.
Non-tree edge: an edge of G that does not belong to the BFS tree T.

Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_j, respectively, and let (x, y) be an edge of G. Then $|i - j| \leq 1$.

Proof by contradiction: Suppose $i < j - 1$. Node $x \in L_i \Rightarrow$ all nodes adjacent to x are in layers $L_1, L_2, \ldots, L_{i+1}$. Hence y must be in layer L_{i+1} or earlier.

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.3 The construction of a breadth-first search tree T for the graph in Figure 3.2, with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1, but do not belong to T.
BFS Trees

- **Non-tree edge**: an edge of G that does not belong to the BFS tree T.
- **Claim**: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_j, respectively, and let (x, y) be an edge of G. Then $|i - j| \leq 1$.
- **Proof by contradiction**: Suppose $i < j - 1$. Node $x \in L_i \Rightarrow$ all nodes adjacent to x are in layers $L_1, L_2, \ldots L_{i+1}$. Hence y must be in layer L_{i+1} or earlier.
- **Still unresolved**: an efficient implementation of BFS.
Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,
Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,

1. Mark all nodes as “Unexplored”.
2. Invoke DFS(s).

DFS(u):
- Mark u as "Explored" and add u to R
- For each edge (u, v) incident to u
 - If v is not marked "Explored" then
 - Recursively invoke DFS(v)
 - Endif
- Endfor
Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,

1. Mark all nodes as “Unexplored”.
2. Invoke DFS(s).

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

- If v is not marked "Explored" then
 - Recursively invoke DFS(v)

Endif

Endfor

- **Depth-first search tree** is a tree T: when DFS(v) is invoked directly during the call to DFS(v), add edge (u, v) to T.
Example of DFS

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.3 The construction of a breadth-first search tree T for the graph in Figure 3.2, with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1, but do not belong to T.

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2, with (a) through (g) depicting the nodes as they are discovered in sequence. The solid edges are the edges of T; the dotted edges are edges of G that do not belong to T.
BFS vs. DFS

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges in BFS are within the same level or between adjacent levels.
 IN DFS, non-tree edges
BFS vs. DFS

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges in BFS are within the same level or between adjacent levels. IN DFS, non-tree edges connect ancestors to descendants.
Properties of DFS Trees

▶ Observation: For a given recursive call \(\text{DFS}(u) \), all nodes marked as “Explored” between the invocation and the end of this invocation are descendants of \(u \) in the DFS tree \(T \).
Properties of DFS Trees

- **Observation**: For a given recursive call $\text{DFS}(u)$, all nodes marked as “Explored” between the invocation and the end of this invocation are descendants of u in the DFS tree T.

- **Claim**: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of G but not of T. Then one of x or y is an ancestor of the other in T.
Properties of DFS Trees

- **Observation:** For a given recursive call DFS\((u)\), all nodes marked as “Explored” between the invocation and the end of this invocation are descendants of \(u\) in the DFS tree \(T\).

- **Claim:** Let \(x\) and \(y\) be nodes in a DFS tree \(T\) such that \((x, y)\) is an edge of \(G\) but not of \(T\). Then one of \(x\) or \(y\) is an ancestor of the other in \(T\).

- **Proof:** Assume, without loss of generality that the DFS algorithm reached \(x\) first.

 - Since \((x, y)\) is an edge in \(G\), it is examined during DFS\((x)\).
 - Since \((x, y) \notin T\), \(y\) must be marked as “Explored” during DFS\((x)\) but before \((x, y)\) is examined.
 - Since \(y\) was not marked as “Explored” before DFS\((x)\) was invoked, it must be marked as “Explored” between the invocation of DFS\((x)\) and the end of this recursive call.
 - Therefore, \(y\) must be a descendant of \(x\) in \(T\).
All Connected Components

- We have discussed the component containing a particular node s.
- Each node belongs to a component.
- What is the relationship between all these components?
All Connected Components

- We have discussed the component containing a particular node s.
- Each node belongs to a component.
- What is the relationship between all these components?
 - If v is in u’s component, is u in v’s component?
 - If v is not in u’s component, can u be in v’s component?
We have discussed the component containing a particular node s.

Each node belongs to a component.

What is the relationship between all these components?

- If v is in u’s component, is u in v’s component?
- If v is not in u’s component, can u be in v’s component?

Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.
All Connected Components

- We have discussed the component containing a particular node s.
- Each node belongs to a component.
- What is the relationship between all these components?
 - If v is in u’s component, is u in v’s component?
 - If v is not in u’s component, can u be in v’s component?
- Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
 1. If G has an s-t path, then the connected components of s and t are the same.
All Connected Components

- We have discussed the component containing a particular node s.
- Each node belongs to a component.
- What is the relationship between all these components?
 - If v is in u’s component, is u in v’s component?
 - If v is not in u’s component, can u be in v’s component?
- Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
 1. If G has an s-t path, then the connected components of s and t are the same.
 2. If G has no s-t path, then there cannot be a node v that is in both connected components.
Computing All Connected Components

1. Pick an arbitrary node s in G.
2. Compute its connected component using BFS (or DFS).
3. Find a node (say v, not already visited) and repeat the BFS from v.
4. Repeat this process until all nodes are visited.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n$, $|E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n-1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in Adj[u] and Adj[v].
 - $n_v =$ the number of neighbours of node v.
 - Space used is $\Theta(n + m)$.
Representing Graphs

- Graph \(G = (V, E) \) has two input parameters: \(|V| = n, |E| = m\).
 - Size of the graph is defined to be \(m + n \).
 - Strive for algorithms whose running time is linear in graph size, i.e., \(O(m + n) \).
- Assume \(V = \{1, 2, \ldots, n - 1, n\} \).
- **Adjacency matrix** representation: \(n \times n \) Boolean matrix, where the entry in row \(i \) and column \(j \) is 1 iff the graph contains the edge \((i, j)\).
 - Space used is \(\Theta(n^2) \), which is optimal in the worst case.
 - Check if there is an edge between node \(i \) and node \(j \) in \(O(1) \) time.
 - Iterate over all the edges incident on node \(i \) in \(\Theta(n) \) time.
- **Adjacency list** representation: array \(\text{Adj} \), where \(\text{Adj}[v] \) stores the list of all nodes adjacent to \(v \).
 - An edge \(e = (u, v) \) appears twice: in \(\text{Adj}[u] \) and \(\text{Adj}[v] \).
 - \(n_v \) = the number of neighbours of node \(v \).
 - Space used is \(O(n + \sum_{v \in G} n_v) \) =
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $n_v = \text{the number of neighbours of node } v$.
 - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $n_v =$ the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in $O(n_u)$ time.
 - Iterate over all the edges incident on node u in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n$, $|E| = m$.
 - Size of the graph is defined to be $m + n$.
 - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $n_v = \text{the number of neighbours of node } v$.
 - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in $O(n_u)$ time.
 - Iterate over all the edges incident on node u in $\Theta(n_u)$ time.
Data Structures for Implementation

- "Implementation" of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
Data Structures for Implementation

- “Implementation” of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
 - BFS: store visited nodes in a queue (first-in, first-out).
 - DFS: store visited nodes in a stack (last-in, first-out)
Implementing BFS

- Maintain an array Discovered and set Discovered[\(v\)] = \text{true} as soon as the algorithm sees \(v\).

BFS(s):

Set Discovered[s] = true and Discovered[v] = false for all other \(v\)

Initialize \(L[0]\) to consist of the single element \(s\)

Set the layer counter \(i=0\)

Set the current BFS tree \(T=\emptyset\)

While \(L[i]\) is not empty

- Initialize an empty list \(L[i+1]\)

 For each node \(u \in L[i]\)

 Consider each edge \((u,v)\) incident to \(u\)

 If Discovered[\(v\)] = false then

 Set Discovered[\(v\)] = true

 Add edge \((u,v)\) to the tree \(T\)

 Add \(v\) to the list \(L[i+1]\)

 Endif

Endfor

Increment the layer counter \(i\) by one

Endwhile
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue L.

BFS(s):

Set $\text{Discovered}[s] = \text{true}$ and $\text{Discovered}[v] = \text{false}$ for all other v

Initialize $L[0]$ to consist of the single element s

Set the layer counter $i = 0$

Set the current BFS tree $T = \emptyset$

While $L[i]$ is not empty

 Initialize an empty list $L[i + 1]$

 For each node $u \in L[i]$

 Consider each edge (u, v) incident to u

 If $\text{Discovered}[v] = \text{false}$ then

 Set $\text{Discovered}[v] = \text{true}$

 Add edge (u, v) to the tree T

 Add v to the list $L[i + 1]$

 Endif

 Endfor

 Increment the layer counter i by one

Endwhile
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i = 0
Set the current BFS tree T = Ø
While L[i] is not empty
 Initialize an empty list L[i+1]
 For each node u ∈ L[i]
 Consider each edge (u, v) incident to u
 If Discovered[v] = false then
 Set Discovered[v] = true
 Add edge (u, v) to the tree T
 Add v to the list L[i+1]
 Endif
 Endfor
 Increment the layer counter i by one
Endwhile

▶ Naive bound on running time is
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i = 0
Set the current BFS tree T = Ø
While L[i] is not empty
 Initialize an empty list L[i+1]
 For each node u ∈ L[i]
 Consider each edge (u, v) incident to u
 If Discovered[v] = false then
 Set Discovered[v] = true
 Add edge (u, v) to the tree T
 Add v to the list L[i+1]
 Endif
 Endfor
 Increment the layer counter i by one
Endwhile

- Naive bound on running time is \(O(n^2) \).
- Improved bound:
 - Maintaining layers:
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i = 0
Set the current BFS tree T = Ø
While L[i] is not empty
 Initialize an empty list L[i+1]
 For each node u ∈ L[i]
 Consider each edge (u, v) incident to u
 If Discovered[v] = false then
 Set Discovered[v] = true
 Add edge (u, v) to the tree T
 Add v to the list L[i+1]
 Endif
 Endfor
 Increment the layer counter i by one
Endwhile

- Naive bound on running time is $O(n^2)$.
- Improved bound:
 - Maintaining layers: $O(n)$ time.
 - for loop for a node u:
Analysis of BFS Implementation

BFS(s):
- Set Discovered[s] = true and Discovered[v] = false for all other v
- Initialize L[0] to consist of the single element s
- Set the layer counter i = 0
- Set the current BFS tree T = ∅
- While L[i] is not empty
 - Initialize an empty list L[i+1]
 - For each node u ∈ L[i]
 - Consider each edge (u, v) incident to u
 - If Discovered[v] = false then
 - Set Discovered[v] = true
 - Add edge (u, v) to the tree T
 - Add v to the list L[i+1]
 - Endif
 - Endfor
- Increment the layer counter i by one
- Endwhile

- Naive bound on running time is $O(n^2)$.
- Improved bound:
 - Maintaining layers: $O(n)$ time.
 - for loop for a node u: $O(n_u)$ time.
 - Total time for all for loops: $\sum_{u \in G} O(n_u) = O(m)$ time.
 - Total time is $O(n + m)$.
Recursive DFS

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

If v is not marked "Explored" then

Recursively invoke DFS(v)

Endif

Endfor

Procedure has “tail recursion”: recursive call is the last step.
Recursive DFS

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

If v is not marked "Explored" then
 Recursively invoke DFS(v)
Endif
Endfor

- Procedure has “tail recursion”: recursive call is the last step.
- Can replace the recursion by an iteration: use a stack to explicitly implement the recursion.
Implementing DFS

- Maintain a stack S to store nodes to be explored.
- Maintain an array Explored and set $\text{Explored}[v] = \text{true}$ when the algorithm pops v from the stack.
- Read textbook on how to construct the DFS tree.

DFS(s):

Initialize S to be a stack with one element s

While S is not empty
 Take a node u from S
 If $\text{Explored}[u] = \text{false}$ then
 Set $\text{Explored}[u] = \text{true}$
 For each edge (u, v) incident to u
 Add v to the stack S
 Endfor
 Endif
Endwhile
Comparing Recursion and Iteration

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u,v) incident to u

- If v is not marked "Explored" then

 Recursively invoke $DFS(v)$

Endif

Endfor

DFS(s):

Initialize S to be a stack with one element s

While S is not empty

- Take a node u from S

 If $Explored[u] = \text{false}$ then

 Set $Explored[u] = \text{true}$

 For each edge (u,v) incident to u

 Add v to the stack S

Endfor

Endif

Endwhile
Analysing DFS

DFS(s):

Initialize S to be a stack with one element s
While S is not empty
 Take a node u from S
 If Explored[u] = false then
 Set Explored[u] = true
 For each edge (u, v) incident to u
 Add v to the stack S
 Endfor
Endif
Endwhile
Analysing DFS

DFS(s):

Initialize S to be a stack with one element s

While S is not empty

Take a node u from S

If $\text{Explored}[u] = \text{false}$ then

Set $\text{Explored}[u] = \text{true}$

For each edge (u, v) incident to u

Add v to the stack S

Endfor

Endif

Endwhile

- How many times is a node's adjacency list scanned? Exactly once.
Analysing DFS

DFS(s):
 Initialize S to be a stack with one element s
 While S is not empty
 Take a node \(u \) from S
 If Explored[\(u \)] = false then
 Set Explored[\(u \)] = true
 For each edge \((u, v)\) incident to \(u \)
 Add \(v \) to the stack \(S \)
 Endfor
 Endif
 Endwhile

- How many times is a node’s adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node \(u \)’s is...
Analysing DFS

DFS(s):

- Initialize S to be a stack with one element s
- While S is not empty
 - Take a node u from S
 - If $\text{Explored}[u] = \text{false}$ then
 - Set $\text{Explored}[u] = \text{true}$
 - For each edge (u, v) incident to u
 - Add v to the stack S
 - Endfor
- Endif
- Endwhile

- How many times is a node’s adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node u’s is $O(n_u)$.
- The total running time of the algorithm is $O(n + m)$.