
Computational Tractability Asymptotic Order of Growth Common Running Times

Analysis of Algorithms

T. M. Murali

August 26, 2009

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

I Measure resource requirements: how do the amount of time and space that

an algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of

space.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

I Measure resource requirements: how do the amount of time and space that

an algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of

space.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.
I Avoid depending on test cases or sample runs.

I Bound the largest possible running time the algorithm over all inputs of size

n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not

matter.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

I Make analysis independent of hardware and software.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.
I Avoid depending on test cases or sample runs.

I Bound the largest possible running time the algorithm over all inputs of size

n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not

matter.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

I Make analysis independent of hardware and software.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.
I Avoid depending on test cases or sample runs.

I Bound the largest possible running time the algorithm over all inputs of size

n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input.

Values in the input do not

matter.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

I Make analysis independent of hardware and software.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.
I Avoid depending on test cases or sample runs.

I Bound the largest possible running time the algorithm over all inputs of size

n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not

matter.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

I Make analysis independent of hardware and software.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.

I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should

only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0

and d > 0 such that on every input of size n, the running time of the

algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist constant

s

c > 0

and n0 ≥ 0

such that

for all n ≥ n0,

we have f (n) ≤

c

g(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist constant

s

c > 0

and n0 ≥ 0

such that

for all n ≥ n0,

we have f (n) ≤

c

g(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exists constant

s

c > 0

and n0 ≥ 0

such that

for all n ≥ n0,

we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constant

s

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constant

s

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constant

s

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper and Lower Bounds

I Express �4n2 + 100 does not grow faster than n2.�

I Express �n2/4 grows faster than n + 1, 000, 000.�

De�nition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constant

s

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

De�nition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

De�nition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these de�nitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is

θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i =

O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.

I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k,

then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).

I If f = O(g), then f + g = Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g =

Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Sub-linear time.

Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(n log n) Time

I Any algorithm where the costliest step is sorting.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.

Surprising fact: will solve this problem in O(n log n) time later in the

semester.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.

Surprising fact: will solve this problem in O(n log n) time later in the

semester.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.

Surprising fact: will solve this problem in O(n log n) time later in the

semester.

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.

there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If

the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.

there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If

the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.

there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If

the answer is yes, report it.

I Running time is

O(k2
(
n

k

)
) = O(nk).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.

there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If

the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of

size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of

size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of

size i . Output largest independent set found.

I What is the running time?

O(n22n).

T. M. Murali August 26, 2009 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of

size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali August 26, 2009 Analysis of Algorithms


	Computational Tractability
	Asymptotic Order of Growth
	Common Running Times

