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About the Course Data and Algorithm Analysis Proof by Induction

Course Information
I Instructor

I T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
I O�ce Hours: 9:30am�11:30am Mondays and Wednesdays

I Teaching assistant
I Chris Poirel, poirel@vt.edu
I O�ce Hours: to be decided

I Class meeting time
I MW 2:30pm�3:45pm, McBryde 134

I Keeping in Touch
I Course web site

http://courses.cs.vt.edu/~cs4104/spring2009, updated

regularly through the semester
I Listserv: cs4104_91844@listserv.vt.edu

I Prerequisites: CS 2604 or CS 2606, MATH 3134 or MATH 3034
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About the Course Data and Algorithm Analysis Proof by Induction

Required Course Textbook

I Algorithm Design
I Jon Kleinberg and Éva Tardos
I Addison-Wesley
I 2006
I ISBN: 0-321-29535-8
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About the Course Data and Algorithm Analysis Proof by Induction

Course Goals

I Learn methods and principles to construct algorithms.
I Learn techniques to analyze algorithms mathematically for

correctness and e�ciency (e.g., running time and space used).
I Course roughly follows the topics suggested in textbook

I Measures of algorithm complexity
I Graphs
I Greedy algorithms
I Divide and conquer
I Dynamic programming
I Network �ow problems
I NP-completeness
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About the Course Data and Algorithm Analysis Proof by Induction

Required Readings

I Reading assignment available on the website.
I Read before class.
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About the Course Data and Algorithm Analysis Proof by Induction

Lecture Slides

I Will be available on class web site.
I Usually posted just before class.
I Class attendance is extremely important.

Lecture in class
contains signi�cant and substantial additions to material on the
slides.
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About the Course Data and Algorithm Analysis Proof by Induction

Homeworks

I Posted on the web site ≈ one week before due date.
I Announced on the class listserv.
I Prepare solutions digitally but hand in hard-copy.

I Solution preparation recommended in LATEX.

T. M. Murali August 24, 2009 Introduction to CS 4104



About the Course Data and Algorithm Analysis Proof by Induction

Homeworks

I Posted on the web site ≈ one week before due date.
I Announced on the class listserv.
I Prepare solutions digitally but hand in hard-copy.

I Solution preparation recommended in LATEX.

T. M. Murali August 24, 2009 Introduction to CS 4104



About the Course Data and Algorithm Analysis Proof by Induction

Examinations

I Take-home midterm.
I Take-home �nal (comprehensive).
I Prepare digital solutions (recommend LATEX).

I Examinations may change to be in class.
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About the Course Data and Algorithm Analysis Proof by Induction

Grades

I Homeworks: ≈ 8, 60% of the grade.
I Take-home midterm: 15% of the grade.
I Take-home �nal: 25% of the grade.
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About the Course Data and Algorithm Analysis Proof by Induction

What is an Algorithm?

Chamber's A set of prescribed computational procedures for solving
a problem; a step-by-step method for solving a problem.

Knuth, TAOCP An algorithm is a �nite, de�nite, e�ective procedure,
with some input and some output.
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About the Course Data and Algorithm Analysis Proof by Induction

Origin of the word �Algorithm�

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name
for the 9th century mathematician, Abu Ja'far Mohammed ben
Musa.

He wrote �Kitab al-jabr wa'l-muqabala,� which evolved
into today's high school algebra text.

2. From Al Gore, the former U.S. vice-president who invented the
internet.

3. From the Greek algos (meaning �pain,� also a root of
�analgesic�) and rythmos (meaning ��ow,� also a root of
�rhythm�). �Pain �owed through my body whenever I worked on
CS 4104 homeworks.� � former student.
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About the Course Data and Algorithm Analysis Proof by Induction

Problem Example

Find Minimum

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: Pair (i , xi) such that xi = min{xj | 1 ≤ j ≤ n}.
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About the Course Data and Algorithm Analysis Proof by Induction

Algorithm Example

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n

3 do if xj < xi
4 then i ← j

5 return (i , xi)
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About the Course Data and Algorithm Analysis Proof by Induction

Running Time of Algorithm

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n

3 do if xj < xi
4 then i ← j

5 return (i , xi)

I At most 2n − 1 assignments and n − 1 comparisons.
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About the Course Data and Algorithm Analysis Proof by Induction

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n

3 do if xj < xi

4 then i ← j

5 return (i , xi )

I Proof by contradiction: Suppose algorithm returns (k , xk) but there
exists 1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k , xk), xk ≤ xj , for all
k < j ≤ n. Therefore l < k .

I What does the algorithm do when j = l? It must set i to l , since we

have been told that xl is the smallest element.
I What does the algorithm do when j = k (which happens after j = l)?

Since xl < xk , the value of i does not change.
I Therefore, the algorithm does not return (k , xk) yielding a

contradiction.
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About the Course Data and Algorithm Analysis Proof by Induction

Correctness of Algorithm: Proof 2

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n

3 do if xj < xi

4 then i ← j

5 return (i , xi )

I Proof by induction: What is true at the end of each iteration?

I Claim: xi = min{xm | 1 ≤ m ≤ j}, for all 1 ≤ j ≤ n.
I Claim is true ⇒ algorithm is correct (set j = n).
I Proof of the claim involves three steps.

1. Base case: j = 1 (before loop). xi = min{xm | 1 ≤ m ≤ 1} is trivially
true.

2. Inductive hypothesis: Assume xi = min{xm | 1 ≤ m ≤ j}.
3. Inductive step: Prove xi = min{xm | 1 ≤ m ≤ j + 1}.

I In the loop, i is set to be j + 1 if and only if xj+1 < xi .
I Therefore, xi is the smallest of x1, x2, . . . , xj+1 after the loop

ends.
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About the Course Data and Algorithm Analysis Proof by Induction

Format of Proof by Induction

I Goal: prove some proposition P(n) is true for all n.
I Strategy: prove base case, assume inductive hypothesis, prove

inductive step.

I Base case: prove that P(1) or P(2) (or P(small number)) is
true.

I Inductive hypothesis: assume P(n − 1) is true.
I Inductive step: prove that P(n − 1)⇒ P(n).
I Why does this strategy work?

T. M. Murali August 24, 2009 Introduction to CS 4104



About the Course Data and Algorithm Analysis Proof by Induction

Format of Proof by Induction

I Goal: prove some proposition P(n) is true for all n.
I Strategy: prove base case, assume inductive hypothesis, prove

inductive step.
I Base case: prove that P(1) or P(2) (or P(small number)) is

true.
I Inductive hypothesis: assume P(n − 1) is true.
I Inductive step: prove that P(n − 1)⇒ P(n).

I Why does this strategy work?

T. M. Murali August 24, 2009 Introduction to CS 4104



About the Course Data and Algorithm Analysis Proof by Induction

Format of Proof by Induction

I Goal: prove some proposition P(n) is true for all n.
I Strategy: prove base case, assume inductive hypothesis, prove

inductive step.
I Base case: prove that P(1) or P(2) (or P(small number)) is

true.
I Inductive hypothesis: assume P(n − 1) is true.
I Inductive step: prove that P(n − 1)⇒ P(n).
I Why does this strategy work?

T. M. Murali August 24, 2009 Introduction to CS 4104



About the Course Data and Algorithm Analysis Proof by Induction

Sum of �rst n natural numbers

P(n) =
n∑

i=1

i =

n(n + 1)
2

.
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About the Course Data and Algorithm Analysis Proof by Induction

Recurrence Relation

Given

P(n) =

{
P(bn

2
c) + 1 if n > 1

1 if n = 1

prove that

P(n) ≤

1 + log2 n.

I Use strong induction: In the inductive hypothesis, assume that
P(i) is true for all i < n.
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