Introduction to CS 4104

T. M. Murali

August 24, 2009

T. M. Murali

August 24, 2009

Introduction to CS 4104

Instructor

- ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Mondays and Wednesdays
- Teaching assistant
 - Chris Poirel, poirel@vt.edu
 - Office Hours: to be decided

Instructor

- ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Mondays and Wednesdays
- Teaching assistant
 - Chris Poirel, poirel@vt.edu
 - Office Hours: to be decided
- Class meeting time
 - MW 2:30pm-3:45pm, McBryde 134

Instructor

- ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Mondays and Wednesdays
- Teaching assistant
 - Chris Poirel, poirel@vt.edu
 - Office Hours: to be decided
- Class meeting time
 - MW 2:30pm-3:45pm, McBryde 134
- Keeping in Touch
 - Course web site http://courses.cs.vt.edu/~cs4104/spring2009, updated regularly through the semester
 - Listserv: cs4104_91844@listserv.vt.edu

Instructor

- ▶ T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Mondays and Wednesdays
- Teaching assistant
 - Chris Poirel, poirel@vt.edu
 - Office Hours: to be decided
- Class meeting time
 - MW 2:30pm-3:45pm, McBryde 134
- Keeping in Touch
 - Course web site http://courses.cs.vt.edu/~cs4104/spring2009, updated regularly through the semester
 - Listserv: cs4104_91844@listserv.vt.edu

▶ Prerequisites: CS 2604 or CS 2606, MATH 3134 or MATH 3034

Required Course Textbook

- Algorithm Design
- Jon Kleinberg and Éva Tardos
- Addison-Wesley
- ▶ 2006
- ISBN: 0-321-29535-8

Course Goals

- Learn methods and principles to construct algorithms.
- Learn techniques to analyze algorithms mathematically for correctness and efficiency (e.g., running time and space used).
- Course roughly follows the topics suggested in textbook
 - Measures of algorithm complexity
 - ► Graphs
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Network flow problems
 - NP-completeness

Required Readings

- ► Reading assignment available on the website.
- Read before class.

Lecture Slides

- ► Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important.

Lecture Slides

- ► Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important. Lecture in class contains significant and substantial additions to material on the slides.

Homeworks

- \blacktriangleright Posted on the web site pprox one week before due date.
- Announced on the class listserv.
- Prepare solutions digitally but hand in hard-copy.

Homeworks

- \blacktriangleright Posted on the web site pprox one week before due date.
- Announced on the class listserv.
- Prepare solutions digitally but hand in hard-copy.
 - Solution preparation recommended in LATEX.

Examinations

- Take-home midterm.
- ► Take-home final (comprehensive).
- ► Prepare digital solutions (recommend LaTEX).

Examinations

- Take-home midterm.
- ► Take-home final (comprehensive).
- ► Prepare digital solutions (recommend \Larger TEX).
- Examinations may change to be in class.

Grades

- Homeworks: \approx 8, 60% of the grade.
- ► Take-home midterm: 15% of the grade.
- ► Take-home final: 25% of the grade.

Proof by Induction

What is an Algorithm?

What is an Algorithm?

Chamber's A set of prescribed computational procedures for solving a problem; a step-by-step method for solving a problem. Knuth, TAOCP An algorithm is a finite, definite, effective procedure, with some input and some output.

1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- 3. From the Greek *algos* (meaning "pain," also a root of "analgesic") and *rythmos* (meaning "flow," also a root of "rhythm").

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- From the Greek algos (meaning "pain," also a root of "analgesic") and rythmos (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 4104 homeworks." - former student.

- From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa. He wrote "Kitab al-jabr wa'l-muqabala," which evolved into today's high school algebra text.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- From the Greek algos (meaning "pain," also a root of "analgesic") and rythmos (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 4104 homeworks." - former student.

Problem Example

Find Minimum **INSTANCE:** Nonempty list $x_1, x_2, ..., x_n$ of integers. **SOLUTION:** Pair (i, x_i) such that $x_i = \min\{x_j \mid 1 \le j \le n\}$.

Algorithm Example

Find-Minimum
$$(x_1, x_2, \ldots, x_n)$$
1 $i \leftarrow 1$ 2for $j \leftarrow 2$ to n 3do if $x_j < x_i$ 4then $i \leftarrow j$ 5return (i, x_i)

Running Time of Algorithm

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Running Time of Algorithm

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

• At most 2n - 1 assignments and n - 1 comparisons.

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Proof by contradiction:

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l = min{x_j | 1 ≤ j ≤ n}.

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l = min{x_j | 1 ≤ j ≤ n}.
Is k < l?

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

- Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l = min {x_j | 1 ≤ j ≤ n}.
- Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

- Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l = min{x_j | 1 ≤ j ≤ n}.
- Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.</p>
- What does the algorithm do when j = l? It must set i to l, since we have been told that x_l is the smallest element.
- ▶ What does the algorithm do when j = k (which happens after j = l)? Since x_l < x_k, the value of i does not change.
- Therefore, the algorithm does not return (k, x_k) yielding a contradiction.

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Proof by induction: What is true at the end of each iteration?

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Proof by induction: What is true at the end of each iteration?

- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Proof by induction: What is true at the end of each iteration?

- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true \Rightarrow algorithm is correct (set j = n).

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

- Proof by induction: What is true at the end of each iteration?
- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true \Rightarrow algorithm is correct (set j = n).
- Proof of the claim involves three steps.
- 1. Base case: j = 1 (before loop). $x_i = \min\{x_m \mid 1 \le m \le 1\}$ is trivially true.
- 2. Inductive hypothesis: Assume $x_i = \min\{x_m \mid 1 \le m \le j\}$.
- 3. Inductive step: Prove $x_i = \min\{x_m \mid 1 \le m \le j+1\}$.
 - ▶ In the loop, *i* is set to be j + 1 if and only if $x_{j+1} < x_i$.
 - Therefore, x_i is the smallest of $x_1, x_2, \ldots, x_{i+1}$ after the loop

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that P(1) or P(2) (or P(small number)) is true.
- Inductive hypothesis: assume P(n-1) is true.
- Inductive step: prove that $P(n-1) \Rightarrow P(n)$.

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that P(1) or P(2) (or P(small number)) is true.
- Inductive hypothesis: assume P(n-1) is true.
- Inductive step: prove that $P(n-1) \Rightarrow P(n)$.
- ► Why does this strategy work?

Proof by Induction

Sum of first *n* natural numbers

$$P(n) = \sum_{i=1}^{n} i =$$

Proof by Induction

Sum of first *n* natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Recurrence Relation

Given

$$P(n) = \begin{cases} P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

prove that

 $P(n) \leq$

Recurrence Relation

Given

$$P(n) = \begin{cases} P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

prove that

 $P(n) \leq 1 + \log_2 n.$

Recurrence Relation

Given

$$P(n) = \begin{cases} P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

prove that

$$P(n) \leq 1 + \log_2 n.$$

► Use strong induction: In the inductive hypothesis, assume that P(i) is true for all i < n.</p>