
Midterm Examination

CS 4104 (Fall 2009)

Assigned: October 12, 2009.
Due: at the beginning of class on October 21, 2009.

Name:

PID:

Instructions

1. For every algorithm you describe, prove its correctness and analyse its running time. I am looking for
clear descriptions of algorithms and for the most efficient algorithms and analysis that you can come
up with. I am not specifying the desired running time for each algorithm. I will give partial credit to
inefficient algorithms, as long as they are correct.

2. You may consult the textbook, your notes, or the course web site to solve the problems in the exam-
ination. You may not work on the exam with anyone else, ask anyone questions, or consult other
textbooks or sites on the Web for answers. Do not use concepts from Chapters 6 and later in the
textbook.

3. You must prepare your solutions digitally and submit a hard-copy.

4. I prefer that you use LATEX to prepare your solutions. However, I will not penalise you if you use a
different system. To use LATEX, you may find it convenient to download the LATEX source file for this
document from the link on the course web site. At the end of each problem are three commented lines
that look like this:

% \solution{
%
% }

You can uncomment these lines and type in your solution within the curly braces.

5. Do not forget to staple the hard copy you hand in.

Good luck!

1

CS 4104 (Fall 2009): Midterm Examination

Problem 1 (25 points) Solve the following recurrence relation. Note that the recurrence involves two
variables n and k.

T (n, k) ≤

{
2T (n, k − 1) + ckn if k > 1,
cn if k = 1.

(1)

You can assume that c is a positive constant. Hint: Unrolling the recurrence may yield a sum that
seems hard to analyse. At this point, make a reasonable guess about this sum, and prove the guess
by induction (as discussed in class). You may have to play around with your guess till the proof by
induction works out correctly.

Solution: Let us unroll the recurrence. There are at most k levels to the recurrence, since k decreases
by 1 at each level and k = 1 in the base case. At level i, there are 2i sub-problems parameterised by
n and k − i, with each sub-problems contributing at most c(k − i)n to T (n, k, for a total contribution
of c(k − i)2in work at the level. Therefore

T (n, k) ≤
k∑

i=1

c(k − i)2in

≤ cn

k∑
i=1

(k − i)2i

≤ c(2k+1 − k − 2)n

= O(2kn)

This sum is somewhat non-trivial to bound, but is important to note that the tight bound is O(2kn)
and not O(k2kn), which has an extra factor of k.

We will use induction to prove that T (n, k) ≤ c(2k+1 − 2k − 1)n. The proof is valid for every value of
n. In other words, we behave as if n acts like a “constant” in the proof.

Base case: k = 1. From the recurrence, we have T (n, 1) ≤ cn. Substituting k = 1 into our guess, we
have T (n, 1) ≤ c(22− 1− 2)n = cn. Since cn ≤ cn (with the left hand side coming from the recurrence
and the right hand side coming from the guess), the base case is true.

Inductive hypothesis: Let us assume that T (n, k − 1) ≤ c(2k − (k − 1)− 2)n = c(2k − k − 1)n.

Inductive step: We will prove that T (n, k) ≤ c(2k+1−k−2)n, using the following series of inequalities:

T (n, k) ≤ 2T (n, k − 1) + ckn, from the recurrence relation

≤ 2
(
c(2k − k − 1)n

)
+ ckn, from the inductive hypothesis

= c(2k+1 − 2k − 2 + k)n

= c(2k+1 − k − 2)n, the bound we needed to prove.

Remarks: I deduced 5 points if you proved a bound of O(k2kn). I heavily penalised students who
forgot the proof by induction. There were some basic flaws in some proofs by induction:

1. The right inductive hypothesis is that T (n, k−1) ≤ c(2k−2(k−1)−1)n. It is incorrect to change
the right-hand side of the inductive hypothesis to include terms you get from the recurrence or
to add extra terms that do not appear in the bound you want to prove.

2. It is correct to act as if n behaves like a constant throughout the proof. If you base your inductive
hypothesis on T (n− 1, k− 1), then your inductive step must prove the bound for T (n, k− 1) and
on T (n, k).

2

CS 4104 (Fall 2009): Midterm Examination

3. Some students used equalities throughout their proofs. Doing so is incorrect because the recurrence
is given to us as an inequality.

Problem 2 (15 points) Consider the problem of minimising lateness that we discussed in class. We are
given n jobs. For each job i, 1 ≤ i ≤ n, we are given a time t(i) and a deadline d(i). Let us assume
that all the deadlines are distinct. We want to schedule all jobs on one resource. Our goal is to assign
a starting time s(i) to each job such that each job is delayed as little as possible. A job i is delayed if
f(i) > d(i); the lateness of the job is max(0, f(i)− d(i)).

Define

1. the lateness of a schedule as maxi

(
max

(
0, f(i)− d(i)

))
and

2. the delay of a schedule as
∑n

i=1

(
max

(
0, f(i)− d(i)

))
.

Note that although the words “lateness” and “delay” are synonyms, for the purpose of this problem
we are defining them to mean different quantities: the lateness of a schedule is the maximum of the
latenesses of the individual jobs, while the delay of a schedule is the sum of the latenesses of the
individual jobs.

Consider the algorithm that we discussed in class for computing a schedule with the smallest lateness:
we sorted all the jobs in increasing order of deadline and scheduled them in this order. In this problem,
we will show in two different ways that this algorithm does not compute the schedule with the smallest
delay:

(i) (5 points) Provide a counter-example to show that this algorithm will not compute the schedule
with the smallest delay. You will not need more than two jobs in your counter-example.

(ii) (10 points) We proved that the earliest-deadline-first algorithm correctly solves the problem of
minimising lateness. If we were to use the same proof to try to demonstrate that the algorithm
correctly solves the problem of minimising delay, where does the proof break down?

Solution:

(i) Consider two jobs 1 and 2 with t(1) = 1, d(1) = 4, t(2) = 10, and d(2) = 3. The earliest-deadline-
first algorithm with schedule job 2 before job 1, incurring a delay of (10 − 3) + (11 − 4) = 14.
However, scheduling job 1 before 2 incurs a smaller delay of 0 + 11− 3 = 8.

(ii) The proof breaks down when we try to show that removing an inversion from a schedule cannot
increase the delay. If the two (consecutive) jobs that have the inversion are i and j, we defined
the notation l(i) as the lateness of job i in the schedule with the inversion and l′(i) as the lateness
in the schedule without the inversion. While it is true that l′(i) and l′(j) are both less than the
maximum of l(i) and l(j), we cannot guarantee that l′(i) + l′(j) ≤ l(i) + l(j). Since the delay is
defined in terms of the sum of the individual latenesses, it is possible that removing an inversion
actually increases the total delay.

Remarks: Most students did well on this problem. Some students did not explicitly specify the proof
that their example was a counter-example.

Problem 3 (30 points) We say that one two-dimensional point p = (px, py) looks down on another two-
dimensional point q = (qx, qy) if px ≥ qx and py ≥ qy. For example, the point (2, 10) looks down upon
the point (−5, 8) but not upon the point (−5, 12). In a set P of n two-dimensional points, a point p is
said to be majestic if no point in P looks down upon p. Devise an efficient algorithm to compute all
majestic points in P . Note that the number of majestic points can vary anywhere from 1 (e.g., if all
points are on the line x = y, then the point with the largest y-coordinate is the only majestic point)
to |P | (e.g., if all points are on the line x + y = 1, then all points are majestic). Your algorithm must
automatically determine the correct subset of P that make up the majestic points. Therefore, your
proof of correctness must show that

1. all points returned by your algorithm are majestic and

3

CS 4104 (Fall 2009): Midterm Examination

2. all majestic points in P are computed by your algorithm.

Solution:

Algorithm 1: This approach uses a sort and a linear scan of the sorted points. Sort the points in
decreasing order of x-coordinate and let pi, 1 ≤ i ≤ n be the ith point in this order. Note that p1 is
majestic since no other point has a larger x-coordinate. For 1 ≤ i ≤ n, define yi = maxi

j=1 piy
1, i.e.,

yi is the largest y-coordinate of the first i points. If p(i+1)y
< yi,2 then pi+1 cannot be majestic, since

there is some point with a larger x-coordinate that also has a larger y-coordinate. On the other hand,
if p(i+1)y

> yi, then pi+1 must be majestic: no point with a larger x-coordinate than pi+1 has a larger
y-coordinate than pi+1. These observations imply a simple linear scan over the points: output p1 as
majestic, set y1 = p1y

and for every other i, 1 < i ≤ n, if piy
> yi−1, output pi as majestic and update

yi = piy
. This algorithm takes O(n log n) time (O(n log n) time for the initial sort and O(n) time for

the scan).

Algorithm 2: This approach uses divide and conquer. Let M(P) denote the set of points computed
by the algorithm presented below for the set P .3 If P contains just one point, simply return P .
Otherwise, sort the points in increasing order of x-coordinate. Divide the points into two sets L and
R, with L containing the bn/2c points with the smallest x-coordinates and R containing the remaining
points. Recursively compute M(L) and M(R), while ensuring that the points in M(L) and M(R) are
sorted in decreasing order of y-coordinate.4 In the conquer step, we will merge M(L) and M(R) to
yield M(P). Let p be the first point in M(R). Using a linear scan, identify the set M ′(L) of points in
M(L) whose y-coordinates are larger than py. Concatenate M ′(L) and M(R) and return these points
as M(P).

The running time of this algorithm is O(n log n) since we solve a problem of size n by recursively
solving two problems of size at most dn/2e and we spend O(n) time in the conquer step.

The algorithm’s correctness follows from the following three statements, which we will prove by induc-
tion on the size of P :

(i) All points in M(P) are majestic.

(ii) Every majestic point is in M(P).

(iii) M(P) is sorted in decreasing order of y-coordinate.

The base case is when |P | = 1: all these statements are true because the only point in P is majestic
and M(P) contains this point.

For the inductive hypothesis, assume that all three statements hold true for the set M(Q) computed
by the algorithm for all sets of points Q, where |Q| < |P |.
In the inductive step, we need to prove that given M(L) and M(R) (for each of whom the three
properties hold by the inductive hypothesis), the conquer step computes M(P) correctly. Let us prove
each of the properties.

(i) All points in M(P) are majestic. The algorithm constructs M(P) from a subset of points in M(L)
and all points in M(R).
Let us consider M(R) first. Each point in M(R) has a larger x-coordinate than every point in
L. Therefore, no point in L can look down on any point in M(R). Furthermore, no point in
M(R) can look down on another point in M(R), since M(R) is the set of majestic points for

1Double subscripts are evil; don’t use them. Try to rewrite this proof without using double subscripts.
2Double subscripts with operations in them are even more evil.
3Note that we are not defining M(P) to be the set of majestic points in P , since we have not yet specified the algorithm,

let alone proven that the algorithm computes the set of majestic points correctly.
4If this condition is satisfied, you can prove that the points in M(L) and in M(R) are sorted in increasing order of x-

coordinate.

4

CS 4104 (Fall 2009): Midterm Examination

R. Therefore, the algorithm does not include any non-majestic points when it includes M(R) in
M(P).
Now let us consider the subset M ′(L) of points from M(L) that the algorithm includes in M(P).
All these points have y-coordinate larger than that of p, the first point in M(R). Since p is the
first point in M(R) and since M(R) is sorted in decreasing order of y-coordinate (by the inductive
hypothesis), p is the point with largest y-coordinate in R. Therefore, every point in M ′(L) has a
larger y-coordinate than every point in R, proving that M ′(L) contains only majestic points.

(ii) Every majestic point is in M(P). Let q be a majestic point for the set of points P ; q is an
element either of L or of R. Suppose q ∈ R. Then q must be majestic in R as well. Therefore,
by the inductive hypothesis, q ∈ M(R) and thus q ∈ M(P) by construction, since the algorithm
includes all points in M(R) in M(P). Suppose q ∈ L; q must be majestic in L as well. Therefore,
by the inductive hypothesis, q ∈ M(L). The point p identified by the algorithm has a larger x-
coordinate than q. Since q is majestic in P , q must have a larger y-coordinate than p. Therefore,
the algorithm will include q in M ′(L) and therefore in M(P).

(iii) M(P) is sorted in decreasing order of y-coordinate. Note that we must prove this property since we
used this property to prove the first property. The algorithm constructs M(P) by concatenating
M ′(L) with M(R). Since M ′(L) is a sub-sequence of M(L) (M ′(L) consists of all points in M(L)
with y-coordinate larger than py) and M(L) is sorted in decreasing order of y-coordinate (by
the inductive hypothesis), so is M ′(L). Furthermore, M(R) is also sorted in decreasing order of
y-coordinate (by the inductive hypothesis). Every point in M ′(L) has larger y-coordinate than
every point in M(R) by construction. Therefore, the concatenation of M ′(L) and M(R) is sorted
in decreasing order of y-coordinate.

Remarks: The primary mistake was to provide an algorithm with O(n2) running time by essentially
comparing each point to every other point. Since this solution is very easy to obtain, I deducted 20
points. Other students had very short or sketchy proofs, which boiled down to “My algorithm is correct
because every point it computes is majestic.” I deducted anywhere between 5 and 10 points for such
proofs.

Problem 4 (30 points) The curriculum in the Department of Computer Science at the University of Dra-
conia consists of n courses. Each course is mandatory. The prerequisite graph G has a node for each
course, and an edge from course v to course w if and only if v is a prerequisite for w. In such a case,
a student cannot take course w in the same or an earlier semester than she takes course v. A student
can take any number of courses in a single semester. Design an algorithm that computes the minimum
number of semesters necessary to complete the curriculum. You may assume that G does not contain
cycles, i.e., it is a directed acyclic graph. Chapter 3.6 of the textbook discusses directed acyclic graphs.
The graph can be split into multiple components. For example, an extreme case is when there are no
pre-requisites at all, in which case each course is in a separate component. Of course, one semester
suffices in this trivial case.

If you are concerned about how G is represented, assume that for each course, you have a list of courses
for which it is a pre-requisite (the adjacency list representation). If you need, you can assume that the
“list” for each course is stored in an array. if you want to use another representation, please describe
it. Do not use an adjacency matrix representation.

Solution: There are numerous solutions to this problem. We will present a greedy strategy.

Consider any path P in G. The courses in P must be scheduled in different semesters, since each
course (but the last) in P is a pre-requisite for the next course in P . Therefore, we require a number
of semesters at least equal to the length of P . Applying the argument to the longest path Q in G, the
smallest number of semesters must be at least as large as the length of Q. Let k be the length of
Q. If we could develop an algorithm that schedules all courses in k semesters, it would be optimal.

A greedy strategy suggests itself. The algorithm operates in rounds. In round i, i > 1, the algorithm
finds all courses that have no pre-requisites, schedules them in semester i, and deletes them from G.
The algorithm terminates when G is empty.

5

CS 4104 (Fall 2009): Midterm Examination

Let us prove the optimality of the algorithm. Note that there must be at least one course without a
pre-requisite in a DAG, as proven in (3.19) on page 102 of your textbook. Thus the algorithm removes
at least one course in each round. The remaining graph is a DAG, since deleting a node from a DAG
cannot introduce cycles. Therefore, the algorithm terminates in at most n rounds.

We will now prove that the algorithm actually terminates in k rounds, thereby establishing its opti-
mality. Note that it is not enough to prove that the courses in the longest path Q are scheduled in
k semesters. We have to prove, in addition, that for every path in G, the courses in that path are
scheduled within k semesters. To do so, we define the depth dv of a course v ∈ G to be the number
of courses in the longest path in G that terminates at v; we include v in this count. Clearly, the
largest depth of a course is k. It suffices to prove that the greedy algorithm schedules every course v
in semester dv.

We can prove this fact by induction. The base case is dv = 1. These are precisely the courses in G
that have no pre-requisites. Indeed, the algorithm schedules these courses in semester 1. Now, for the
inductive hypothesis, assume that the algorithm schedules all courses w with dw ≤ l in semester dw.
We will now prove the statement for semester l + 1, i.e., for courses v with dv = l + 1. Consider the
graph Gl that remains at the end of round l. Let v be a course with depth l+1 in G. What is the depth
of v in Gl? If this depth is 1, we are done with the proof, since the algorithm will schedule v in this
round (which is l + 1). Suppose the depth of v in Gl is larger than 1. Then v must have a pre-requisite
u in Gl. What is du, the depth of u in G? By the inductive hypothesis, the algorithm has already
scheduled all courses w with dw ≤ l in semester dw. Therefore, du must be larger than l, implying that
the depth of v is dv > du + 1 > l + 1, which contradicts the fact that dv = l + 1. Note that we used
the fact that the depth of a course must be at least 1 more than the depth of any pre-requisite for
the course. Consequently, v has no pre-requisite in Gl, meaning that v will be scheduled in semester
dv = l + 1, as desired. This completes the proof.

As for the running time, we can modify the algorithm for topologically sorting a DAG on pages 103 and
104 of your textbook to achieve a running time of O(m + n), where m is the number of pre-requisite
pairs in G. Briefly, for every course v, we maintain a counter pv set to the number of pre-requisites of
v in G. In the first round, we find all courses with pv = 0 using a linear scan through G and schedule
them. In round i, when we schedule a course u, we

(i) decrement by 1 the pv values for all courses v for which u is a pre-requisite and

(ii) add such a node v to the list of nodes to be scheduled in the next round if pv reaches 0.

Since G is provided to us in adjacency list format, we can perform this operation in time proportional
to the number of courses for which u is a pre-requisite. We process any edge (u, v) only when we
schedule u. Therefore the total work done by the algorithm is O(m + n).

Remarks: Some students proved the optimality of the algorithm by using the argument that the
greedy algorithm always stays ahead of any other algorithm. Suppose the greedy algorithm uses l
semesters to schedule all courses and the optimal algorithm uses m < l semesters. Let Gi, 1 ≤ i ≤ l be
the set of the courses the greedy algorithm schedules in semester i and let Oi, 1 ≤ i ≤ m be the set of
courses that the optimal algorithm schedules in semester i. Then for all 1 ≤ j ≤ m,

j⋃
i=1

Gi ⊇
j⋃

i=1

Oi.

These students proved the statement by induction, and then showed that m = l. This proof is valid
and elegant, but it gives you less insight into the problem since it does not relate l to any structural
quantity in G, namely the length of the longest path in G.

It is not enough just to say that since “the greedy algorithm schedules each courses as soon as it can be
scheduled, it must output the smallest number of semesters.” How do we know that an algorithm that
does adopts a different strategy will not use fewer semesters? I deduced points for solutions without
proof of correctness.

6

CS 4104 (Fall 2009): Midterm Examination

Another technical inaccuracy in many proofs was claiming that the smallest number of semesters in
which the courses can be scheduled equals the length k of the longest path Q in G. This statement is
not immediately obvious. The only thing that is clearly true is that the smallest number of semesters
must be at least as large as k. It is always possible that more semesters may be needed. The
algorithm is a constructive proof that all courses can indeed be scheduled in k semesters. I deduced
some points for students who made this mistake.

Many students based their proof on notions such as “depth” of a node without defining the term. Since
I could not guess what you mean, I deducted points, depending on how difficult it was to understand
your solution.

Other students decided to use depth-first search, often by incrementing and decrementing counters
keeping track of the length of the longest path. However, can you prove that you can indeed use DFS
to compute the longest path in a DAG? I deducted 10 points for DFS-based answers.

7

