CS 4104

Fastest-Way Pseudocode — Class Version

February 9, 2006

Pseudocode for FASTEST-WAY, the dynamic programming solution¹ of the Assembly-Line Scheduling problem, is found on page 329 in the textbook. The pseudocode for the version of the FASTEST-WAY algorithm developed in class is found in Figure 1. Descriptive comments have been added at the top, and the body of the primary **for** loop (lines 9-16) has been simplified. Array notation has been replaced by mathematical notation with subscripts. And the values returned by the algorithm are explicitly given in the **return** statement (line 22).

FASTEST-WAY(a, t, e, x, n)

 \triangleright *n* is the number of assembly stations in each assembly line 1 $\mathbf{2}$ $\triangleright a_{ij}$, where i = 1, 2 and $1 \le j \le n$, is the assembly time for station S_{ij} 3 $\triangleright t_{ij}$, where i = 1, 2 and $1 \le j \le n - 1$, is the switching time from S_{ij} to S3 - i, j $\triangleright e_i$, where i = 1, 2, is the entry time for assembly line i 4 $\triangleright x_i$, where i = 1, 2, is the exit time for assembly line i 56 \triangleright returns the computed values f_{ij} , f^* , l_{ij} , and l^* $\overline{7}$ $f_{1,1} \leftarrow e_1 + a_{1,1}$ 8 $f_{2,1} \leftarrow e_2 + a_{2,1}$ for $j \leftarrow 2$ to n9 \triangleright assembly step j for $i \leftarrow 1$ to 2 \triangleright assembly line *i* 10do $r \leftarrow 3 - i$ \triangleright the other assembly line 11 **do if** $f_{i,j-1} \le f_{r,j-1} + t_{r,j-1}$ 12 $\begin{array}{l} \text{then } f_{ij} \leftarrow a_{ij} + f_{i,j-1} \\ \text{then } f_{ij} \leftarrow a_{ij} + f_{i,j-1} \\ l_{ij} \leftarrow i \\ \text{else } f_{ij} \leftarrow a_{ij} + f_{r,j-1} + t_{r,j-1} \\ l_{ij} \leftarrow r \end{array}$ 1314151617if $f_{1n} + x_1 \le f_{2,n} + x_2$ then $f^* \leftarrow f_{1n} + x_1$ 18 $\tilde{l}^* \leftarrow 1$ 19else $f^* \leftarrow f_{2,n} + x_2$ $l^* \leftarrow 2$ 2021return f_{ij}, f^*, l_{ij}, l^* 22

Figure 1: The class version of the FASTEST-WAY algorithm for finding the optimal time f^* of an optimal schedule solving an instance of Assembly-Line Scheduling.

¹Actually, this is the algorithm that computes the optimal values and the back pointers, not the actual optimal schedule.