Syllabus: CS 4104 Data and Algorithm Analysis Fall, 2013

1 General Course Information

CRN	92094
MEETING TIME	2:30 PM-3:45 PM; Mondays and Wednesdays
CLASSROOM	3083 Derring Hall
FINAL EXAM	Wednesday, December 18, 4:25–6:25

Instructor: Lenwood S. Heath

• Office: 2160J Torgersen Hall

• Office Hours: 1:00–2:15 and 3:45–4:30, Mondays and Wednesdays

• Email: heath@vt.edu

Teaching Assistants:

	Sorour Ekhtiari	Brendan Avent	
EMAIL	esorour@vt.edu	bavent@vt.edu	
Office Hours	See Web site	See Web site	
Room	See Web site	See Web site	

Web Site: http://courses.cs.vt.edu/cs4104/heath/Fall2013/index.php

Scholar: https://scholar.vt.edu/

Piazza: http://www.piazza.com/

Prerequisites:

• CS 3114, Data Structures and Algorithms, minimum grade C

• MATH 3134, Applied Combinatorics and Graph Theory, or MATH 3034, Introduction to Proofs

Required Textbook: Introduction to Algorithms (Third Edition). Cormen, Leiserson, Rivest, and Stein. MIT Press, 2009. ISBN: 978-0-262-03384-8.

2 Course Description

This course emphasizes techniques for constructing efficient algorithms and techniques for analyzing the efficiency of an algorithm. The notion of a *problem* is defined. Problems in a number of application areas are covered. Lower bounds on the efficiency of solving a problem are also addressed, especially the notion of NP-completeness.

3 Grading Policy

Grading for the course is on a 1000-point scale, with the points distributed as follows:

Homework assignments: 10 at about 60 points each	600
Midterm exam: October 16, 2013	150
Final exam: Wednesday, December 18, 4:25–6:25	250

A typical homework assignment consists of 2 to 4 problems, posted on the course web site approximately one week before the due date.

All homework must be prepared with L^AT_EX¹ or other word processing system and submitted as a PDF to Scholar by 5:00 PM on the due date². **No late homework will be accepted.**

4 Readings

For most classes, there is a reading assignment (see Section 7) to be completed by class time. Each assignment consists of sections in the textbook.

5 Ethics

The Honor Code applies. All work submitted must be the student's own work. Students may solicit help only from the instructor or the teaching assistants.

6 Announcement

If any student needs special accommodations because of a disability, please contact the instructor during the first week of classes.

¹See LATEX resources on the course web site.

²See Calendar on the course web site.

7 Course Schedule

DATES	Reading Assignment	TOPICS			
	A	UGUST			
8/26-8/30	Chapters 1 and 2	Problems, complexity, analysis			
	September				
9/2-9/6	Chapter 3; Section 15.1	Asymptotics; dynamic programming			
9/9-9/13	Sections 15.2–15.4	Dynamic programming			
9/16-9/20	Sections 16.1–16.3	Greedy algorithms			
9/23-9/27	Section 22.1–22.4	Depth-first search; topological sort			
9/30-10/4	Section 23.1–23.2	Substitution arguments; minimum spanning trees			
October					
10/7-10/11	Sections 24.1–24.3	Single-source shortest paths; relaxation; Bellman-Ford; Dijkstra			
10/14-10/18	Sections 25.1–25.2	All-pairs shortest paths; Floyd-Warshall; transitive closure			
10/16	Midterm Exam	Topics through single-source shortest paths			
10/21-10/25	Sections 34.1–34.2	Polynomial time; optimization and decision problems; encoding problems			
10/28-11/1	Sections 34.2–34.3	Polynomial-time reductions and NP-completeness			
November					
11/4-11/8	Sections 34.4–34.5	Proving problems NP-complete			
11/11-11/15	Sections 32.1–32.3	String matching			
11/18-11/22	Sections 35.1–35.3	Approximation algorithms			
11/25-11/29	9 Thanksgiving Break				
December					
12/2-12/6	Sections 26.1–26.3	Maximum flow; maximum bipartite matching			
12/11	Last Day of Class	Review for final; questions on homework solutions and course material			
12/18	Final Exam	4:25–6:25: Comprehensive final exam			