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The protein folding problem can be viewed as three different

problems: defining the thermodynamic folding code; devising a

good computational structure prediction algorithm; and

answering Levinthal’s question regarding the kinetic

mechanism of how proteins can fold so quickly. Once regarded

as a grand challenge, protein folding has seen much progress

in recent years. Folding codes are now being used to

successfully design proteins and non-biological foldable

polymers; aided by the Critical Assessment of Techniques for

Structure Prediction (CASP) competition, protein structure

prediction has now become quite good. Even the once-

challenging Levinthal puzzle now seems to have an answer — a

protein can avoid searching irrelevant conformations and fold

quickly by making local independent decisions first, followed

by non-local global decisions later.
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Introduction
The amino acid sequence of a protein determines its

structure, which determines its mechanism of action.

This key paradigm in biochemistry accounts for nearly

one in four Nobel Prizes in Chemistry since 1956 [1]. The

protein folding problem is the question of how the amino

acid sequence of a protein dictates its structure. We were

asked to say when the folding problem would be solved.

The general perception has been that the protein folding

problem is a grand challenge that will require many

supercomputer years to solve. For example, in 2005,

Science named the protein folding problem one of the

125 biggest unsolved problems in science [2]. We argue
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here, instead, that great headway has been made, both

theoretical and experimental, and that the central pro-

blems of principle, and even key problems of imple-

mentation and practice, have already been solved. We

summarize progress, problems and new directions, as we

see them.

Three problems of protein folding
The protein folding problem is three different problems:

the folding code — the thermodynamic question of how a

native structure results from the interatomic forces acting

on an amino acid sequence; protein structure prediction

— the computational problem of how to predict the

native structure of a protein from its amino acid sequence;

and folding speed (Levinthal’s paradox) — the kinetic

question of how a protein can fold so fast (the grand

challenge noted above).

The folding code

Before the mid-1980s, the predominant view was that the

protein folding code is the sum of many different small

interactions (hydrogen bonds, ion pairs, van der Waals

interactions, hydrophobic interactions), mainly expressed

through secondary structures and mainly local in the

sequence (i.e. near neighbors along the chain; see, for

example, the review by Anfinsen and Scheraga [3]).

However, through statistical mechanical modeling, a

different view emerged in the late 1980s — namely, that

there is a dominant component to the folding code (the

hydrophobic interaction), that the folding code is distrib-

uted both locally and non-locally in the sequence, and

that native secondary structures are more a consequence

than a cause of folding forces [4].

Although there are alternative viewpoints [5], there are

now many experiments showing that ‘reduced-alphabet

solvation-based’ codes correctly encode native structures

[6,7] and the amyloid-like aggregates that are formed by

particular sequences [8��]. In addition, such codes are

being used to design new polymeric materials, called

‘foldamers’ [9]. Folded helical bundles have now been

designed using non-biological backbones [10��] and there

is a rapidly expanding list of such molecules finding

applications in biomedicine, including antimicrobials

[11], lung surfactant replacements [12], cytomegalovirus

inhibitors [13�] and potential siRNA delivery agents [14�].

In addition, protein design is also an increasingly success-

ful enterprise. Novel proteins are now being designed as

variants of existing proteins [15�,16�,17], or from broa-

dened alphabets of non-natural amino acids [18] or de novo
www.sciencedirect.com
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[19]. However, key challenges remain — to better under-

stand the relative strengths of intermolecular and

solvation interactions, and to design a broad range of

folds and tighter packing, for example. Nevertheless,

questions of great principle are no longer bottlenecks

to designing foldable polymers for practical applications

and new materials.

Computational protein structure prediction

Bioinformatics based

A long-standing goal of computational biology has been to

devise a computer algorithm that takes, as input, an amino

acid sequence and gives, as output, the three-dimensional

native structure of a protein. A main motivation is to make

drug discovery faster and more efficient by replacing slow

expensive structural biology experiments with fast cheap

computer simulations. A major milestone in computer-

based native structure prediction was the invention of

CASP (Critical Assessment of Techniques for Structure

Prediction) by John Moult, now in its 13th year [20�]. An

experiment in the sociology of science, CASP is a com-

munity-wide blind test to predict unknown protein struc-

tures, given only the amino acid sequence. Currently,

homology modeling has the speed to compute approxi-

mate folds for large fractions of whole genomes [21,22].

For single-domain globular proteins smaller than about 90

amino acids, web servers can commonly predict native

structures often to within about 2–6 Å of their experimen-

tal structures [23��,24��,25].

Remaining challenges include predicting the structures of

large multidomain or domain-swapped proteins, consist-

ency in achieving errors routinely better than 3 Å and

predicting the native states of membrane proteins [26].

Nevertheless, these successes in the computer-based pre-

diction of native protein structures are far beyond what was

expected 20 years ago, when the problem looked imposs-

ible. The new frontiers are in predicting protein–protein

interactions [22,27] and protein function [28].

Physics based

A small scientific community currently aims to use purely

physics-based methods, without knowledge derived from

databases (such as statistical energy functions or second-

ary structure predictors), to explore native structures and

folding processes. Once ‘physics-only’ or ‘physics-mainly’

approaches succeed, the advantages would be: the ability

to predict conformational changes, such as induced fit, a

common and important unsolved problem in compu-

tational drug discovery; the ability to understand protein

mechanisms, motions, folding processes, conformational

transitions and other situations in which protein behavior

requires more than just knowledge of the static native

structure; the ability to design synthetic proteins for new

applications or to design foldable polymers from non-

biological backbones; and the ability to systematically

improve protein modeling based on the laws of physics.
www.sciencedirect.com
Physics-based methods are currently limited by some

inaccuracies in the force-fields and by huge compu-

tational requirements. Nevertheless, there have been

notable successes in the past decade. The first milestone

was a supercomputer simulation by Duan and Kollman

[29] in 1998 of the 36-residue villin headpiece in explicit

solvent starting from an unfolded conformation, for nearly

a microsecond of computer time, reaching a collapsed

state 4.5 Å from the NMR structure. More recently, the

IBM Blue Gene group of Pitera and Swope [30] folded

the 20-residue Trp-cage peptide in implicit solvent to

within �1 Å using 92 ns of replica-exchange molecular

dynamics. With Folding@Home, a distributed grid com-

puting system, Pande et al. [31] folded villin to a distance

RMSD of 1.7 Å.

There have also been successes in physics-mainly

methods, whereby physical potentials are combined with

some database information. In summary, although

physical models lag behind bioinformatics methods in

predicting native structures, the energy functions are

proving to be better than thought a few years ago, and

distributed computing and new search methods are mak-

ing inroads into computing large protein conformational

changes.

Folding speed and mechanism

In 1968, Cyrus Levinthal first noted the puzzle that,

even though proteins have vast conformational spaces,

proteins can search and converge quickly to native

states, sometimes in microseconds. How do proteins

find their native states so quickly? For many of us, this

is the fundamental protein folding problem. An interest-

ing conjecture, probably originated by Robert L

Baldwin, was that understanding the mechanism of

protein folding might lead to fast computational algor-

ithms for predicting native structures from their amino

acid sequences.

The question of folding mechanism has driven major

advances in folding experiments. Two decades ago,

experimentalists had few tools. Key problems included

how to measure folding events on timescales faster than a

few milliseconds and how to monitor individual chain

monomers during folding. Now, we have fast laser

temperature-jump methods [32]; mutational methods

that give quantities called f [33] or c [34] values, which

can identify those amino acids that control the folding

speed; FRET methods that can watch the formation of

particular contacts [35,36]; hydrogen exchange methods

that see structural folding events [37]; and extensive

studies on model proteins, including cytochrome c, chy-

motrypsin inhibitor 2, barnase, apomyoglobin, src, a-

spectrin, fyn SH3 domains, proteins L and G, WW

domains, trpzip and the Trp-cage. These studies have

led to the recognition, first by Plaxco, Simons and Baker,

of a universal property. They found that protein folding
Current Opinion in Structural Biology 2007, 17:342–346
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speeds — now known to vary over more than eight orders

of magnitude — correlate with the topology of the native

protein: fast folders usually have mostly local structure,

such as helices and tight turns, whereas slow folders

usually have more non-local structure, such as b sheets

[38]. Interestingly, however, the fastest known folder at

the present time is a three-stranded b sheet; it folds in

140 ns [39��]. A key frontier is to understand the speed

limit of folding [40]. Work on ‘ultrafast’ folders is redefin-

ing how we think about kinetic barriers in chemical rate

processes [41,42].

Our understanding of folding mechanisms has also been

advanced by theory and simulations. Where do we now

stand on the matter of the speed principle raised by

Levinthal? One step towards an answer was the recog-

nition, through statistical mechanical modeling, that fold-

ing does not involve a single microscopic pathway, but

rather funnel-shaped energy landscapes [43–45]. The

road to the native state from the vast majority of indi-

vidual non-native conformations is downhill and is differ-

ent for each non-native starting conformation. Folding

processes are microscopically heterogeneous and thus are

not readily probed by classical experiments, even despite

the advances noted above, because traditional exper-

iments ‘see’ only average quantities, not variations and

distribution functions. Funnels can explain experimental

observations that are otherwise paradoxical when inter-

preted in more classical ways; for example, the finding

that transition states would appear to the left of the

reactant or to the right of the product when interpreted

using simple Hammond–Bronsted models of reaction

coordinate diagrams [46–48]. A key unsolved problem

remains to rationalize how folding rates change with

specific mutations, although a little progress has been

made [49]. On the horizon for characterizing kinetic

heterogeneity are single-molecule experiments

[50�,51��]. Such experiments promise to show us the

detailed shapes of folding energy landscapes. Moreover,

single-molecule studies might be where experiments

meet simulations; master-equation theories are now

extending the timescales of physics-based simulations

to reach those measured by experiments [52,53��].

However, the folding funnel concept is not a complete

answer to Levinthal’s puzzle either. The Baldwin con-

jecture has been a central challenge. To instruct a com-

puter program to find a native state more efficiently than

Monte Carlo or molecular dynamics, we need more. We

need to know the microscopic folding routes. How does a

given chain conformation reach the downhill gulleys that

can take it to the native state, and how does it avoid traps

and hills? One microscopic mechanism that has been

proposed is zipping and assembly (ZA) [54]. According

to the ZA mechanism, proteins can fold quickly because

they don’t search all their degrees of freedom at the same

time. Proteins fold over a wide range of timescales. On the
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fastest timescales (picoseconds to nanoseconds), different

small peptide pieces of the chain explore local confor-

mations independently of other such pieces. Local struc-

ture forms and then grows (zips) to include increasingly

more surrounding chain. Multiple pieces may then

assemble together on slower timescales. The key pro-

blem this mechanism solves is what conformations a

protein does not search [55,56]. Recent tests show that

the ZA mechanism speeds up conformational searching

sufficiently that physics-only models can now find

approximately correct folds for chain lengths up to around

100 monomers [57]. Thus, the ZA mechanism provides a

plausible answer to Levinthal’s kinetic protein folding

problem and shows why proteins don’t need supercom-

puters to guide them to their native structures.

Conclusions
In short, protein folding no longer appears to be an

insurmountable grand challenge. Rather, in the words

of cartoonist Walt Kelly: ‘‘we now face insurmountable

opportunities’’. Current knowledge of folding codes is

sufficient to guide the successful design of new proteins

and new materials. Current computer algorithms are now

predicting the native structures of small simple proteins

remarkably accurately, contributing to drug discovery and

proteomics. Even the once intractable Levinthal puzzle

now seems to have a very simple answer: a protein can

fold quickly and solve its large global optimization puzzle

simply through piecewise solutions of smaller component

puzzles.

Update
Two recently published papers are relevant to this review

[58�,59�].
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