Analytic and Empirical Methods

• Analytic: theory, models, guidelines (experts)
 – Cognitive Walkthrough
 – Usability Inspection
 – Heuristic Evaluation

• Empirical: observations, surveys (users)
 – Field study
 – Lab based
 – Interviews

Empirical Evaluations: Validity

• Conclusions based on actual use, BUT...
 – Are the users representative?
 – Is the test population large, diverse enough?
 – Is the test system realistic (versus early prototype)?
 – Do the tasks match what happens in real use?
 – Do the data (measures) reveal real life impacts?

• These are the general concerns of “ecological validity”, the extent to which an investigation is a genuine reflection of real-world happenings
Field Studies

- Variants of ethnographic methods we discussed during requirements analysis
 - Observation of realistic tasks, interviews, data files, etc.
 - Avoids the problem of ecological validity
- Summarize data through content classification
 - e.g., problem categories, as in themes analysis
 - Can also sort by severity, based on observed impacts
- Field data collection and analysis time-consuming
 - Also, much of the data simply reveals successful use!

Interviews, User Introspection

- Ask users to report what stands
 - More efficient access to data of interest: *critical incidents*
 - Can enhance by making this collaborative, a discussion among usability personnel and multiple stakeholders
- BUT, human memory is biased
 - Wanting things to make sense
 - Assuming things work as they always have
Usability Evaluation in the Lab

- Carefully selected set of representative tasks
 - e.g., based on task analysis of the system, design goals
 - In SBD, claims are used to guide task selection
- Control aspects of situation that are uninteresting
 - e.g., experimenter, location, task order, instructions
- Collect multiple measures of usability impacts
 - Performance (time and errors), output quality
 - Satisfaction ratings or other subjective measures
- Interpretation comes back to validity of the test
 - Both ecological (realism) and internal (controls)

Controlled Experiments

- If asking a specific question, making a choice
- Operationalize independent and dependent variables
 - What is manipulated, what outcomes are measured
- Define hypotheses in advance of the test
 - Causal relation of independent and dependent variables
 - Testing these requires the use of inferential statistics
- Construct an effective and practical design
 - Within-subjects or between-subjects testing conditions
 - How many people to test, how assign to conditions
Some Variations

- Usability testing with *think-aloud* instructions
 - Users comment as they work on their current goals, expectations, and reactions
 - BUT, thinking aloud takes capacity, changes task itself
 - Very useful in supporting formative evaluation goals
- *Storefront testing:* bring the prototype into the hall!
 - Fast, easy, quick cycle...but no control of users, tasks
- All of these can (should!) be supplemented with interviews and/or user reaction surveys
 - Objective measures of behavior not always correlated with subjective measures of experience or satisfaction

Conducting a Usability Test

- Recruiting of test participants
- Preparation of materials
 - informed consent, background & reaction questionnaires, general and task-specific instructions, data collection
- Test procedures
 - before, during, after; including assistance policy
- Summarizing and interpreting the results
Recruiting Test Participants

- **Who are stakeholders, which ones are *actors***?
 - May mean different users for different tasks
 - Or, may mean users role-playing other stakeholders
- **How do you get people to participate?!**
 - Participatory design, but this has its own downsides
 - Offer stipends or other rewards
 - Make test seem interesting, emphasize novelty
 - Last resort, hire from a temp agency...

Informed Consent

- **Always an issue when *human subjects* involved**
 - The history: psychological research that deliberately deceives people, engages them in moral dilemmas, or is potentially harmful
 - The fix: procedures must be approved by a committee
- **Ensures respect for individuals’ concerns and hesitations about participating**
 - Full disclosure of procedures (except when necessary)
 - Clear statement of voluntary nature, participant’s rights
 - Signature indicating understanding and willingness
User Background Questionnaire

- Characterize the user sample you end up with
 - Relevant experience, expectations, starting attitudes
 - The question: are these the users you need to test?

- But also, helps to interpret test results
 - E.G., Experienced computer users will likely do better
 - Domain experts may be more critical, more specific

- A range of questions but not too long
 - Personal, demographic, experience, current attitudes
 - Shoot for one page, seems less intimidating, tedious

See p. 258 for a model to use in developing your own user background survey

Developing User Rating Scales

- Convenient for gathering subjective reactions
 - often summarized numerically by mapping judgment categories to ordinal variable (e.g. 1—>5)
 - flexible, can be very general or specific
 - can use to examine opinion change (post-pre)

- Likert scale: measures strength of agreement to an assertion about the system or task domain

Shopping for groceries online is enjoyable.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task Instructions

• General instructions that introduce overall test
• Two sorts of instructions, depending on test type
 – Open-ended and goal-directed, for scenario exploration
 • These participants will be doing think-aloud process
 – Usage context followed by very precise goals for subtasks
 • Clear specification of the user’s goal
 • Avoid options or ambiguities unless part of the test
 • No step-by-step scripts: you are testing the system, not your ability to write complete instructions!

See p. 254 & p. 259 for models to use in developing your own instructions

Background to Tasks 1-4:
Imagine that you are a neighbor of a high school student (Jeff) who is participating in the VSF. You have discovered that Jeff will be exhibiting his project tonight, and you log on to visit with him. With you is your daughter Erin, who is a middle school student getting interested in science.

Task 1:
• Find Jeff’s exhibit and go to it in the VSF

Task 2:
• Locate Jeff’s position in his exhibit, and join him so that you are looking at the same material

Task 3:
• Join the ongoing conversation (between Jeff and Sarah, another visitor). Let Jeff know that Erin is with you, and ask him to show you around his exhibit.

Task 4:
• Follow Jeff’s directions about how to use the “asterisk tool” to mark the three Excel charts as of interest to you and Erin.

Notice that these instructions make assumptions about system state at each point.
Planning for Data Collection

- Be prepared: know in advance what and how
 - One evaluator interacts with the user, the other keeps track of what happens, collects times, etc.
 - A structured form or template can be very useful
- Take advantage of tools if available and easy to use
 - Video taping, screen capture, event logging, etc.
 - Particularly useful when collecting think-aloud data
- Know when and how to intervene if necessary
 - A three stage assistance policy: “try again”, “look here”, and finally “just do this: …”
 - Be ready to prompt (“what just happened?”) for users in the exploratory think-aloud condition

User Reaction Questionnaire

- Critical for gathering subjective reactions
 - For small tests, interviews can also be very useful
- Similar in structure to background questionnaire
 - But no demographics this time
 - May include change in opinion due to test experience
 - Specific rating scales tied directly to target outcomes in the usability specifications
 - The “three best” or “three worst” features
 - Don’t forget the “anything else?” at the end

See p. 261 for model to use in developing your own instructions
Task-Specific Usability Judgments

<table>
<thead>
<tr>
<th>I was confused by commands used to synchronize and un-synchronize with others.</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>The procedure for uploading files into exhibit components is familiar to me.</td>
<td>Strongly Agree</td>
<td>Agree</td>
<td>Neutral</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Learning that I could not make permanent changes to project data increased my confidence.</td>
<td>Strongly Agree</td>
<td>Agree</td>
<td>Neutral</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Creating a new exhibit element that is nested behind another element is complex.</td>
<td>Strongly Agree</td>
<td>Agree</td>
<td>Neutral</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
</tbody>
</table>

Statistics

- **t-test**
 - Compares 1 dep var on 2 treatments of 1 ind var
- **ANOVA: ANalysis Of VAriance**
 - Compares 1 dep var on n treatments of m ind vars

- **Result: “significant difference” between treatments?**
 - \(p = \) significance level (confidence)
 - typical cut-off: \(p < 0.05 \)
Statistics in Microsoft Excel

- Enter data into a spreadsheet
- Go to Tools…, Data Analysis… (may need to choose Analysis Toolpak from Addins first)
- Select appropriate analysis

t-tests in Excel

- Used to compare two groups of data
- Most common is “t-test: two-sample assuming equal variances”
- Other t-tests:
 - Paired two-sample for means
 - Two-sample assuming unequal variances
ANOVAs in Excel

- Allows for more than two groups of data to be compared
- Most common is “ANOVA: Single factor analysis”
- Other ANOVAs:
 - ANOVA: Two-factor with replication
 - ANOVA: Two-factor without replication

\[p < 0.05 \]

- Found a “statistically significant difference”
- Averages determine which is ‘better’
- Conclusion:
 - Vis Tool has an “effect” on user performance for task1
 - PerspWall better user performance than Lifelines for task1
 - “95% confident that PerspWall better than Lifelines”
 - Not “PerspWall beats Lifelines 95% of time”
- Found a counterexample to the null hypothesis
 - Null hypothesis: Lifelines = PerspWall
 - Hence: Lifelines \(\neq \) PerspWall
p > 0.05

- Hence, same?
 - Vis Tool has no effect on user performance for task1?
 - Lifelines = PerspWall?

- Be careful!
 - We did not detect a difference, but could still be different
 - Did not find a counter-example to null hypothesis
 - Provides evidence for Lifelines = PerspWall, but not proof
 - Boring! Basically found nothing

- How?
 - Not enough users (other tests can verify this)
 - Need better tasks, data, ...

Reporting Results

- Often considered the most important section of professional papers
- Statistics NOT the most important part of the results section
- Statistics used to back up differences described in a figure or table
• Give means and standard deviations, then t-test

 • ... the mean number was significantly greater in condition 1 (M=9.13, SD=2.52) than in condition 2 (M=5.66, SD=3.01), t(44)=3.45, p=.01

What Are Those Numbers?

• ... the mean number was significantly greater in condition 1 (M=9.13, SD=2.52) than in condition 2 (M=5.66, SD=3.01), t(44)=3.45, p=.01
 – M is the mean
 – SD is the standard deviation
 – t is the t stat
 – the number in parentheses is the degrees of freedom (df)
 – p is the probability the difference occurred by chance
Reporting ANOVAs

- ... for the three conditions, F(2,52) = 17.24, MSE = 4528.75, p < .001
 - F(x,y) -- F value for x between groups and y within groups degrees of freedom (df)
 - MSE -- mean square error for the between groups condition
 - p -- probability that difference occurred by chance

Making Sense of the Results

- Relate to high-level goals: is the system useful, easy to learn and use, satisfying?
 - Which of these is hardest to judge in lab study?
- But also compare directly to usability specs:
 - Did you miss, meet, or surpass the target level?
 - More importantly, can you figure out why?
- Guidance on how to change design comes from the details of the testing, not the summary values
 - Why was user confused (or not), why was an interaction difficult or awkward, etc.
Usability Specifications

• Quality objectives for final system usability
 – like any specification, must be precise
 – managed in parallel with other design specifications
• In SBD, these come from scenarios & claims
 – scenarios are analyzed as series of critical subtasks
 – reflect issues raised and tracked through claims analysis
 – each subtask has one or more measurable outcomes
 – tested repeatedly in development to assess how well
 project is doing (summative) as well as to direct design
 effort toward problem areas (formative)
• Precise specification, but in a context of use
A Sample Usability Specification

<table>
<thead>
<tr>
<th>Scenario & Subtasks</th>
<th>Worst Case</th>
<th>Planned</th>
<th>Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction Scenario: Mr. King coaches Sally</td>
<td>2.5 on usefulness, ease of use, and satisfaction</td>
<td>4 on usefulness, ease of use, and satisfaction</td>
<td>5 on usefulness, ease of use, and satisfaction</td>
</tr>
<tr>
<td>1. Identify Sally’s view and synchronize</td>
<td>1 minute, 1 error 3 on confusion</td>
<td>30 seconds, 0 error 2 on confusion</td>
<td>10 seconds, 0 error 1 on confusion</td>
</tr>
<tr>
<td>2. Upload desktop file from the PC</td>
<td>3 minutes, 2 errors 3 on familiarity</td>
<td>1 minute, 1 error 4 on familiarity</td>
<td>30 seconds, 0 error 5 on familiarity</td>
</tr>
<tr>
<td>3. Open, modify, try to save Excel file</td>
<td>2 minutes, 1 error 3 on confidence</td>
<td>1 minute, 0 errors 4.5 on confidence</td>
<td>30 seconds, 0 error 5 on confidence</td>
</tr>
<tr>
<td>4. Create nested exhibit component</td>
<td>5 minutes, 3 errors 3 on complexity</td>
<td>1 minute, 1 error 2 on complexity</td>
<td>30 seconds, 0 error 1 on complexity</td>
</tr>
</tbody>
</table>

• Where do targets come from? Serious, but not absolute
• Notice that we can also “test” overarching scenario

What about Generality?

• Salient risk in focusing only on design scenarios
 – may optimize for these usage situations
 – the “successful” quality measures then reflect this

• When possible, add contrasting scenarios
 – overlapping subtasks, but different user situations
 (user category, background, motivation)
 – assess performance satisfaction across scenarios

• Motivation to construct functional prototypes as early as feasible in development cycle