Prototyping for usability engineering

CS 3724
Doug Bowman

What is prototyping?

- **Prototype**: A concrete but partial implementation of a system design
- Creating an artifact to represent the system during design
- Simulating the appearance and behavior of the final system
- Making something tangible to test (evaluate) for usability

Goals of Prototyping

Prototyping enables evaluation, happens throughout
- Exploring requirements
 - Market analysis, participatory design, envisionment
 - Choosing among alternatives
 - Risky or critical features, go/no-go decisions
 - Empirical usability testing
 - As early as possible, try out ideas with target users
 - Evolutionary development
 - May deliberately choose a malleable software platform, building software in incremental, iterative fashion

Do scenarios as used in SBD serve as prototypes?
Some Key Tradeoffs

- Quality vs. premature commitment
- Realism (e.g. timing, content) vs. early availability or throw-away efforts
- Constant iteration vs. radical change and/or re-factoring of a design
- Dynamic (highly malleable) platforms vs. organized, well-structured code base
- Horizontal vs. vertical
- Low-fidelity vs. high-fidelity

Horizontal vs. Vertical

- Horizontal prototype:
 - broad coverage of features
 - less detail for each feature
 - less realistic evaluation
- Vertical prototype:
 - fewer features
 - more detail for each feature
 - more realistic evaluation

Fidelity in Prototyping

- Fidelity: how much like the final product is the “look and feel” of the prototype?
- High fidelity
 - Prototypes look like the final product
- Low fidelity
 - Artist’s rendition with many details missing

Why Use Low-fi Prototypes?

- Traditional methods take too long
 - Sketches -> prototype -> evaluate -> iterate
- Can simulate the prototype
 - Sketches -> evaluate -> iterate
 - Sketches act as prototypes
 - Designer “plays computer”
 - Other design team members observe & record
- Kindergarten implementation skills
 - Allows non-programmers to participate
Hi-fi Prototypes Warp

- Perceptions of the tester/reviewer?
 - Formal representation indicates “finished” nature
 - Comments on color, fonts, and alignment
- Time?
 - Encourage precision
 - Specifying details takes more time
- Creativity?
 - Lose track of the big picture

More issues in prototyping

- Representation
 - How are designs represented in a prototype?
- Scope
 - How much of the system is prototyped?
- Executability
 - Can the prototype be executed at any time?
- Maturation
 - How does the prototype grow into a product?

Prototyping approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storyboard</td>
<td>Sketches or screenshots illustrating key points in a usage narrative</td>
</tr>
<tr>
<td>Paper/cardboard mock-up</td>
<td>Fabricated devices with simulated controls or display elements</td>
</tr>
<tr>
<td>Wizard of Oz</td>
<td>Workstation connected to invisible human assistant who simulates input, output, or processing functionality not yet available</td>
</tr>
<tr>
<td>Video prototype</td>
<td>Video recording of persons enacting one or more envisioned tasks</td>
</tr>
<tr>
<td>Computer animation</td>
<td>Screen transitions that illustrate a series of input and output events</td>
</tr>
<tr>
<td>Scenario machine</td>
<td>Interactive system implementing a specific scenario’s event stream</td>
</tr>
<tr>
<td>Rapid prototype</td>
<td>Interactive system created with special-purpose prototyping tools</td>
</tr>
</tbody>
</table>

Sketch/storyboard example
Narrative scenario machine example

Textual Storyboard

The voice replies, "You ordered too big burgers with everything. 'These words appear in the "Computer say" field, and these items appear, with their prices, in the box marked, 'Your order'.

"Oh, oh," you think. "The kids won't eat these big burgers! If they have onions on them, I need to make a change..."

Wizard of Oz example

"Off-the-Shelf" Prototyping

- Jump-start the design and iteration process
 - Recruit existing tools and devices
 - Integrate into approximation of a "system"
- Example as used in virtual school project
 - Telephone for audio conferencing
 - Netmeeting for video conferencing, chat
 - Web pages for project questions and answers
 - Email for interaction with mentors
- Can be very useful in requirements exploration and in activity-oriented feasibility studies

Video Prototype example

- Apple “Knowledge Navigator” – 1992
Prototyping Tools

• Presentation tools
 • Paper sketches/printouts
 • PowerPoint
• Scripting languages
 • Tcl/Tk
 • Director
 • SuperCard
• Visual languages
 • Visual Basic
 • SILK/Denim
• Markup languages
 • HTML
 • UIML
• Image/drawing editors
 • Photoshop
 • Freehand
• Animation/video tools
 • Flash
 • QuickTime

Features of a good tool

• Easy to develop and modify screens
• Supports many interface styles
• Supports many I/O devices
• Easy to create and modify links
• Is itself usable
• Allows transitioning of prototype to product

Prototyping with PowerPoint

• Create general look-and-feel of interface with essential functionality
• Generate interface widgets using Visual Basic macros
 • Available through toolbar that can be turned on
 • Must set security level to “Low”
 • Actual control functions can only be tested in “slideshow mode”
• Supports creation of an output file for testing

Integrating HCI with Software Construction

• Classic problem in designing from specifications
 • The “specification–design” gap: a written spec is never enough, always ambiguous, always interpreted
 • Who does the interpretation, using what knowledge?
• There are many ways to create tighter linkage
 • OO analysis and design enable simultaneous attention to user task and software design issues
 • Early and continued prototyping is essential
• But, do we want to do this?
 • Only for projects that allow (welcome) requirement shift, that view design as an inquiry process