Linear Algebra, Norms and Inner Products

I. Preliminaries
A. Definition: a vector space (linear space) consists of:

1. a field F of scalars. (We are interested in $F=\Re$).
2. a set V of vectors.
3. an operation + , called vector addition, which for all $x, y, z \in V$ satisfies:

- $x+y \in V$
- $x+y=y+x$
- $x+(y+z)=(x+y)+z$
- \exists a zero vector 0 , such that $x+0=x$
- \exists an inverse $-x$, such that $x+(-x)=0$

4. an operation •, called scalar multiplication, which for all $x, y \in V$ and $\alpha, \beta \in F$ satisfies:

- $\alpha x \in V$
- \exists and identity 1 , such that $1 x=x$
- $(\alpha \beta) x=\alpha(\beta x)$
- $\alpha(x+y)=\alpha x+\alpha y$
- $(\alpha+\beta) x=\alpha x+\beta x$
B. Examples

1. $V=\Re^{n}=\left\{x \mid x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \Re\right\}$

$$
x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

$$
\alpha x=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)
$$

2. $V=\Re^{m \times n}=\{m \times n$ matrices $\}$

$$
\begin{aligned}
& (A+B)_{i j}=a_{i j}+b_{i j} \\
& (\alpha A)_{i j}=\alpha a_{i j}
\end{aligned}
$$

3. $V=P_{n}=\{$ polynomials of degree $\leq n\}$
4. $V=\{$ continuous functions on $[0,1]\}$
C. Definition: a linear combination of the vectors x_{1}, \ldots, x_{n} is given by

$$
\sum_{i=1}^{n} \alpha_{i} x_{i}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are scalars.
D. Definition: a set of vectors $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent iff

$$
\sum_{i=1}^{n} \alpha_{i} x_{i}=0 \quad \Longrightarrow \quad \alpha_{i}=0
$$

E. Basis

- Definition: a linearly independent set of vectors $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for a vector space V iff for every $x \in V$, there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$, such that $x=\sum_{i=1}^{n} \alpha_{i} x_{i}$
- Fact: all bases of a space have the same number of vectors (the dimension of the space).
- Fact: every vector x has a unique representation in a given basis. Thus we can represent a vector by its coefficients, $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
- terminology: we say that a basis spans a vector space.
F. Definition: given vector spaces V and W, a linear transformation is a mapping $A: V \rightarrow$ W, such that for all $\alpha, \beta \in \Re$ and for all $x, y \in V$,

$$
A(\alpha x+\beta y)=\alpha A x+\beta A y
$$

II. Norms

A. Definition: a norm on a vector space V is a function $\|\cdot\|: V \rightarrow \Re$, such that for all $x, y \in V$ and for all scalars α

$$
\|x\| \geq 0
$$

$\|x\|=0$ iff $x=0$
$\|\alpha x\|=|\alpha|\|x\|$
$\|x+y\| \leq\|x\|+\|y\|$
B. Examples

1. on \Re^{n}

$$
\begin{aligned}
\|x\|_{2} & =\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} & & \left(l_{2}, \text { Euclidean }\right) \\
\|x\|_{1} & =\left|x_{1}\right|+\cdots+\left|x_{n}\right| & & \left(l_{1}\right) \\
\|x\|_{\infty} & =\max _{i}\left|x_{i}\right| & & \left(l_{\infty}, \text { infinity }\right)
\end{aligned}
$$

2. on $\Re^{n \times n}$

- defined in terms of a norm on \Re^{n}.

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|
$$

- intuition: maximum amount that a unit-vector is stretched by the linear transformation represented by A.
- examples:

$$
\begin{aligned}
\|A\|_{2} & =\sqrt{\rho\left(A^{T} A\right)}, \quad \text { where } \rho\left(A^{T} A\right)=\max \text { eigenvalue of } A^{T} A \\
\|A\|_{1} & =\max _{j} \sum_{i=1}^{n}\left|A_{i j}\right| \\
\|A\|_{\infty} & =\max _{i} \sum_{j=1}^{n}\left|A_{i j}\right|
\end{aligned}
$$

3. on $V=\{$ all polynomials $\}$

$$
\|p\|_{\infty}=\max _{0 \leq x \leq 1}|p(x)|
$$

III. Inner products
A. Definition: an inner product is a function $(\cdot, \cdot): V \times V \rightarrow \Re$, satisfying:

$$
\begin{aligned}
& (x, x) \geq 0 \\
& (x, x)=0 \text { iff } x=0 \\
& (x, y)=(y, x) \\
& (\alpha x, y)=\alpha(x, y) \\
& (x+y, z)=(x, z)+(y, z)
\end{aligned}
$$

B. Examples

$$
\begin{array}{ll}
V=\Re^{n} & (x, y)=x^{T} y=\sum_{1}^{n} x_{i} y_{i} \\
V=P_{n}=\{\text { polynomials of degree } \leq n\} & (f, g)=\sum_{1}^{n+1} f\left(x_{i}\right) g\left(x_{i}\right) \\
V=\{\text { continuous functions on }[0,1]\} & (f, g)=\int_{0}^{1} f(x) g(x) d x
\end{array}
$$

C. Orthogonality.

- two vectors x, y are orthogonal if $(x, y)=0$.
- a set $\left\{x_{1}, \ldots, x_{n}\right\}$ is orthogonal if $\left(x_{i}, x_{j}\right)=0, i \neq j$.
- an orthogonal set $\left\{x_{1}, \ldots, x_{n}\right\}$ is orthonormal if $\left(x_{i}, x_{i}\right)=1$.
D. Norms derived from inner products.

$$
\|x\|=\sqrt{(x, x)} \text { is a norm. }
$$

E. Cauchy-Schwarz inequality:

$$
|(x, y)| \leq\|x\|\|y\|, \quad \text { where }\|\cdot\|=\sqrt{(\cdot, \cdot)}
$$

