Finding a minimum of a function. Example.

Problem: A Newton's method is used to find the minimum x^m of $f(x) = \cos(x-1) + \frac{1}{2}(x-1)^2$ for 0.95 < x < 1.05, on a computer with $\epsilon_m = 10^{-8}$. Assuming that the initial guess x_0 is chosen wisely and the method converges normally, how many iterations N will it make before stopping? Assume that the stopping criteria are set correctly.

Figure 1: Function to minimize.

Solution: First, you need to realize that $N=N(|x_0-x^m|,TOL,Method)$. The method is Newton's, so convergence is quadratic (see later). For $|x_0-x^m|$ one can take the entire initial bracketing interval (unless initial x_0 is given, which is not the case in this example), $|x_0-x^m|=1.05-0.95=0.1$. The *generic* value for TOL (in the context of *minimization*) is $TOL=\sqrt{\epsilon_m}\times|x^m|=10^{-4}$ unless there is something special about the function and we can do better (also note that obviously $x^m=1$ in our specific case; in general, unless otherwise specified you can assume $x^m\sim 1$). So, let's stick to the above value of $TOL=10^{-4}$ for now.

Let's see how the actual iterations might look like. Quadratic convergence means that $|x_n-x^m| \leq C \times |x_{n-1}-x^m|^2$. Unless otherwise specified, assume $C \sim 1$ and use the = sign. So, for n=0 we just take $|x_0-x^m|=0.1$ – our initial guess x_0 must be someplace within the [0.95, 1.05] interval of length 0.1. For n=1, $|x_1-x^m|\sim |x_0-x^m|^2=10^{-2}$, for n=2, $|x_2-x^m|\sim |x_1-x^m|^2=(10^{-2})^2=10^{-4}$, etc.

\overline{n}			2			5
$ x_n - x^m $	0.1	10^{-2}	10^{-4}	10^{-8}	10^{-16}	10^{-32}

Therefore, the TOL is reached at n=2 (second iteration). You can stop here, but one can do a bit better. A sharp eye will notice that the function f(x) is extremely flat around its minimum. This is because

$$\underbrace{f(x) \approx 1 - \frac{1}{2}(x-1)^2 + \frac{1}{4!}(x-1)^4 + \dots}_{Taylor for \cos(x-1)} + \frac{1}{2}(x-1)^4 \approx 1 + \frac{1}{24}(x-1)^4, \text{ and so}$$

the closest you can get to the minimum is actually $TOL \sim \epsilon_m^{-1/4} = 10^{-2}$ which gives n=1 (first iteration). Of course, I won't expect you to be so discerning on an actual exam, I will give thick hints that $TOL \sim \sqrt{\epsilon_m}$ is not good enough.