Finding a minimum of a function. Example.
Problem: A Newton's method is used to find the minimum x^{m} of $f(x)=$ $\cos (x-1)+\frac{1}{2}(x-1)^{2}$ for $0.95<x<1.05$, on a computer with $\epsilon_{m}=10^{-8}$. Assuming that the initial guess x_{0} is chosen wisely and the method converges normally, how many iterations N will it make before stopping? Assume that the stopping criteria are set correctly.

Figure 1: Function to minimize.
Solution: First, you need to realize that $N=N\left(\left|x_{0}-x^{m}\right|\right.$, TOL, Method $)$. The method is Newton's, so convergence is quadratic (see later). For $\left|x_{0}-x^{m}\right|$ one can take the entire initial bracketing interval (unless initial x_{0} is given, which is not the case in this example), $\left|x_{0}-x^{m}\right|=1.05-0.95=0.1$. The generic value for $T O L$ (in the context of minimization) is $T O L=\sqrt{\epsilon_{m}} \times\left|x^{m}\right|=10^{-4}$ unless there is something special about the function and we can do better (also note that obviously $x^{m}=1$ in our specific case; in general, unless otherwise specified you can assume $x^{m} \sim 1$). So, let's stick to the above value of $T O L=10^{-4}$ for now.

Let's see how the actual iterations might look like. Quadratic convergence means that $\left|x_{n}-x^{m}\right| \leq C \times\left|x_{n-1}-x^{m}\right|^{2}$. Unless otherwise specified, assume $C \sim 1$ and use the $=$ sign. So, for $n=0$ we just take $\left|x_{0}-x^{m}\right|=0.1-$ our initial guess x_{0} must be someplace within the $[0.95,1.05]$ interval of length 0.1 . For $n=1,\left|x_{1}-x^{m}\right| \sim\left|x_{0}-x^{m}\right|^{2}=10^{-2}$, for $n=2,\left|x_{2}-x^{m}\right| \sim\left|x_{1}-x^{m}\right|^{2}=$ $\left(10^{-2}\right)^{2}=10^{-4}$, etc.

n	0	1	2	3	4	5
$\left\|x_{n}-x^{m}\right\|$	0.1	10^{-2}	10^{-4}	10^{-8}	10^{-16}	10^{-32}

Therefore, the $T O L$ is reached at $n=2$ (second iteration). You can stop here, but one can do a bit better. A sharp eye will notice that the function $f(x)$ is extremely flat around its minimum. This is because
$\underbrace{f(x) \approx 1-\frac{1}{2}(x-1)^{2}+\frac{1}{4!}(x-1)^{4}+\ldots}+\frac{1}{2}(x-1)^{2} \approx 1+\frac{1}{24}(x-1)^{4}$, and so

$$
\text { Taylorfor } \cos (x-1)
$$

the closest you can get to the minimum is actually $T O L \sim \epsilon_{m}^{1 / 4}=10^{-2}$ which gives $n=1$ (first iteration). Of course, I won't expect you to be so discerning on an actual exam, I will give thick hints that $T O L \sim \sqrt{\epsilon_{m}}$ is not good enough.

