
Electrostatic Interactions are key to biological

function
 The strongest force in Nature

 (at least on atomic scale and above)

● Example: DNA winding around histones is held by opposing charges. (histone core charge
+200, DNA = -400 units.)

● Example: Acetylcholine docking into acetylcholinestarase is steered by charges.

● Example: Many active sites in proteins are charged.

● Example: Many docking interfaces are charged.

Example: Function of a synapse (nerve junction)

requires electrostatic steering.

Molecular surface
of acetyl choline
esterase molecule
(structure by
Sussman et al.)
color coded by
electrostatic
potential. The view
is directly into the
active site and
acetyl choline is
present in a bond
representation.
Note the depth of
the pocket, its
negative nature
corresponding to
the postive charge
on the acetyl
choline (small
worm-like thing
inside the red spot)

Curare - the
poison in
blow-darts

Electrostatic potential is traditionally obtained by solving
Poisson-Boltzmann (PB)
equation numerically.

Some popular Real Space PB Solvers designed specifically
for Biomolecular structures:

DelPhi – proprietary finite difference PB solver
http://trantor.bioc.columbia.edu/delphi/

MEAD – open-source finite difference BP solver
http://www.scripps.edu/mb/bashford/

APBS – open-source adaptive mesh PB solver
http://agave.wustl.edu/apbs/

Of these, we chose DelPhi as a reference for comparison
because it is considered to be standard in the field.

Traditional Approach : To obtain electrostatic potential, solve the Poisson-

Boltzmann equation numerically, typically on 3D grid.

Agreement Between NPB and New ALPB

Numerical

Analytical

ALPB: Distribution of Average Absolute Error

 on a per-molecule basis.

Time required to compute and display the potential across
the surface of a molecule from the test set using DelPhi:

 ~ 10 minutes.

Time required to compute and display the potential across
the surface of a molecule from the test set using our

program GEM based on
ALPB:

 ~ 15 seconds.

Run times on a 2 GHz PC:

Almost as accurate, 40x faster

The possibilities are...
Virus

1nm Protein

Supercomputer vs. PC
or Numerical vs. Analytical

“Electrostatics of nanosystems:
 Application to microtubules
 and the ribosome”,
 PNAS 98, 10037 (2001)
 N.A. Baker,
 D. Sept,
 S. Joseph,
 M.J. Holst,
 and J.A. McCammon

finite element algorithm (APBS)
343 CPUs of the NPACI Blue Horizon
Ribosomal complex (100,000 atoms)
0.41 Angstrom resolution.
Execution time: ???
Memory ???

“Analytical electrostatics for biomolecules”,

 to be submitted (2005)
 J.C. Gordon,
 A.T. Fenley,
 and A. Onufriev

 ALPB
 single PC
 virus capsid (500,000 atoms)
 .5 Angstrom resolution
 Execution time: overnight
 Memory: < 100 MB

Agenda

● Memory management

– Stack management

– Heap management

● Implementing mathematical formulae,
factoring and computational complexity

Memory

● Static variables aside, there are two types of
variables, those that are dynamically
allocated and those that are always allocated
when a function is put on the stack. Local
variables are stored on the stack with the
executable code, and dynamically allocated
variables are stored in the heap.

Stack overview

● Stack memory is allocated on entry of a
function and released on return.

● Stack memory is all writable, meaning that
even executable code is writable when on the
stack.

● A function is organized in the following order
on the stack: variables, function return
address, function label, code.

Buffer Overflow Errors

● Because data is organized before executable code, if one
were to overstep a local array in a function and write
binary instructions in where execution should be, those
instructions will be executed.

● Most common buffer overflow: fixed length character
arrays to handle user input

● Recognizing buffer overflow: in *nixes, buffer overflow
commonly results in stack corruption, as evidenced by “In
()??” in debuggers or by the inability to access the pointer
to the function that is currently executing.

Heap overview

● Memory that is allocated and deallocated
dynamically is stored on the heap.

● Heap variables are not structurally related to
the functions in which they are allocated or
deallocated, the heap itself can be seen as a
large contiguous block of available memory
situated in a separate address space from the
stack.

Common heap related bugs

● Memory leaks – result in unavailable memory
when it is needed later.

● Dereferencing pointers to chaos or the void
(typically uninitialized)

● Assuming memory will be available and not
checking allocation.

● Using dynamic structures such as “vector”
without considering the underlying methods
for resizing the array.

Implementing Mathematical
Formulae for Performance

● Prior to implementation, mathematical
functions can be factored with an eye for
computational complexity to improve
performance. (e.g. O(⅀ 3 * k) > O(3 ⅀ k)).

● One should consider the computational
complexity of an operation when using it, and
optimize for performance (e.g. O(2*k) > O
(k+k)).

● Reuse intermediate calculations whenever
possible.

Example Problem:
● Setup for problem: solve for the potential at the

surface of a generic molecular shape.

● The exact solution for a sphere:
фII

q

A
r

d

r0

Infinite sum is useless in practice. Keeping just few

terms will not work since when (r0/r) -> 1 (charges close

to the surface) the sum converges very slowly.
● Apply the following sum trick:

● Key approximation:

Note:

Approximate Solution

● Where α is determined from minimizing
maximum error when compared with
the exact solution on a sphere:

● The distance, r, to a point of interest, p, is greater
than or equal to A, the radius of the sphere.

The prior function was for only 1
contribution to фII

If we leave the sum in front of the whole function, we are obviously missing
 out on a lot of possible optimization.

How do we go about factoring variables out of this function
 assuming it is in a sum?

фII

q

A
r

d

r0
фII

q

A
r

d
r0

фII

q
A

r

d
r0 + +

...

Current Implementation of Prev.

 (1+ α)∑q/d + α(1 – β)/r ∑q

