
Homework Assignment - No tool is perfect. Solutions.

Let’s call function f(x) nice if it is defined everywhere on [-1, 1], −10 < f(x) < 10, the
function is infinitely differentiable on [-1, 1], and has a single minimum on (-1, 1) (trivial
case of extrema at the ends are excluded). For example, f(x) = x2 is a nice function, but
sin(1/x2) or x3 are not. Suppose you use a numerical procedure to find the minimum xapprox

of a nice function. We call such numerical solution right if |xapprox − xexact| < 10−3, xexact

being the exact answer. Otherwise, the solution is called wrong. Note that our definition
is very generous: generically, one expects the correct solution to be within

√
ǫ of the exact,

that is within ∼ 10−7.

0.1 Part I. Explore. 10 pts

UseMathematica to explore the straightforward Newton’s method for finding local minimum.
Nice functions have only one minimum by definition, so not to worry. Use FindMinimum[];
let Mathematica select all input parameters automatically, except the method ”Newton”,
which you specify explicitly (see examples on the class site, you may use any of them as a
template). Explore a nice function f(x) = ax2 + bx4, consider limiting cases such as a = 0,
b = 0, and some intermediates. Present convergence graphs (use FindMinimumPlot[]). Make
your conclusions.

0.1.1 Solution sketch

Start with b = 0, a = 1, notice how you get the exact solution in one step. This is because
Newton’s is exact for quadratic function. For nearly quadratic functions, it converges fast
(quadratically) to the exact solution. Now set b = 0.01 and notice the slowdown. In the
a = 0, b = 1 case the convergence is even slower: this is because f(x) deviates more and
more from ideal quadratic, that is becoming more and more “shallow than a parabola”
near its minimum, and so the iteration step |xn+1 − xn| = f ′(xn)/f

′′(xn) is becoming very
small, which slows down the iterations. Generically, iterative methods stop iterating if some
convergence criteria are satisfied. e.g. |xn+1 − xn| < tol (with tol ∼ √

ǫ ) or if too many
iterations n have been made. You can see how one or both of these can occur for a function
that is very shallow (much more shallow than x2 ) around its minimum.

0.2 Part II. Break. 20 pts

Now that you understand well how Newton’s method works, show it! Come up with
a nice function (use the definition above) that breaks Newton’s method that is
Mathematica, with default settings, gives a wrong solution (see above defs.) without so much
as a peep - no warnings or errors. Present convergence graphs (use FindMinimumPlot[]).
Explain the failure.

0.2.1 Solution sketch

You have inferred in part II that Newton’s works progressively worse as the function deviates
from pure parabola: the shallower the minimum, the slower the iterative process. This
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Figure 1: Convergence of Newton’s minimization method. Each iteration step is shown by a

circle. Left: Single step convergence for f(x) = x2. Right: Much slower convergence for

f(x) = x4.

suggest that a very shallow minimum might break the method: a little experimenting with
f(x) = xN shows that N = 20 does the trick. Here is the Mathematica output in this
case: Value of X that minimizes F, xmin = −0.0240265, F (xmin) = 4.10968 ∗ 10−33. The
”solution”, xnum = −0.0240265 is wrong by our definition above. Obviously, x20 is not a
unique f(x) here.

0.3 Part III. Fix. 10 pts

Reason which method from your C&K textbook may mitigate the problem. Give an intuitive
explanation for why the alternative to Newton’s works; in a few sentences, give at least one
pro and one con for your alternative.

0.3.1 Solution sketch

What you have learned is that performance of Newton’s method is great for nearly quadratic
functions, but quickly deteriorates for those that are shallower near the minimum. One
reason is that the method depends on derivatives that → 0 in the latter case. So you might
try your luck with a more ”primitive” method that does not use derivatives: it may not be
as fast in the best case scenario (f(x) = x2), but may be more robust in the worst case.
The golden section method is an obvious choice: the only requirement is that the function
is unimodal – nice functions are (see e.g. the appropriate chapter in the C & K book ). The
obvious pro of the golden section is its robustness: it will work for just about any unimodal
function, not just nice differentiable ones. The obvious con is that the method converges
slowly to the solution (linearly). Brent method (also available in GSL) is another option
along these lines: it is a bit more complicated than the Golden section, but might be faster.

0.4 Part IV. Fix again. 10 pts

See if you can harness Mathematica’s unique functionality and options to make it find the
right solution, using the same Newton’s. In fact, you may be able to get to it within

√
ǫ
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(Find what machine epsilon is for your machine. Use code on the class site). Explain why the
solution, while useful in research, is not very useful in situations when you need to quickly
find lots of minima as part of a larger code written in a standard language such as C.

0.4.1 Solution sketch

By now you know what is happening: Newton’s converging too slowly for x20 near the exact
minimum x = 0. So, a straightforward, albeit not very effective, remedy is to up the number
of iterations. However, setting MaxIterations → 10000 gives the same wrong answer ”Value
of X that minimizes F, xmin = -0.0240265”. The problem is that beyond a certain number
of iterations, xn+1 and xn become indistinguishable within the standard machine precision,
and the algorithm stops. Here is where the power of Mathematica comes in: you can set any
precision for the numbers and functions you are computing. Add WorkingPrecision → 400
to FindMinimum[] options, and you will get the position of the minimum to within 10−199

from the exact answer xexact = 0. This is an overkill, but makes the point. The iterations
will take appreciably longer though. Implementing an arbitrary precision arithmetic in your
regular code is cumbersome, and the calculations will take a long time. Not worth it in
most case. A good solution is to recognize that the problem is ”ill conditioned” in some
sense and solve it in a different way. Sometime more primitive but robust approaches help.
But, generally, ill-conditioned problems require special, problem-specific treatment, and even
then, accuracy may be poor. This is where Mathematica excells: as a research tool.
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