CS3414. EXAMPLE PROBLEMS. SOLVING ODEs

1 Question

You are solving several ODEs together; each one looks like $y_{i}^{\prime \prime}=k_{i} * y_{i}$, where $k_{i}<0$ for all i. This ODE is known to have the exact solution: $y_{i}(t)=A * \sin \left(\omega_{i} t+\phi_{i}\right)$, where ϕ_{i} is determined by the initial condition at $t=0$.

You have chosen the 1st order Euler method discussed in class to solve the problem numerically, with one and the same step size h for all the ODEs.

1. (5 points) What is reasonable guess for the step size h ? (circle the one correct answer). EXPLAIN.
A) $h \ll$ minimum of $\left\{1 / \sqrt{k_{i}}\right\}$
B) $h \ll$ maximum of $\left\{1 / \sqrt{k_{i}}\right\}$
C) $h \gg$ minimum of $\left\{1 / \sqrt{k_{i}}\right\}$
D) $h \gg$ maximum of $\left\{1 / \sqrt{k_{i}}\right\}$
E) $h=0.1 * \epsilon_{\text {mach }}$
F) $h=\epsilon_{\text {mach }}$

SOLUTION:
2. (5 points) Using Euler's method you quickly find a numerical solution to the above ODE, which has these points in it: $\mathrm{t}(1.8)=0.1 ; \mathrm{t}(3.14)=1 ; \mathrm{t}(10)=7.1 ; \mathrm{t}(100)=-723.1$; What is a likely explanation for the pattern? EXPLAIN.
(A) The original ODE is unstable. (B) The step-size chosen is too large. (C) The step side is too small. SOLUTION.

2 Question

You are solving $y^{\prime}=y^{2}, y(0)=1$ using a numerical method, say Euler's. You are finding that no matter how small a step size h you take, you just can not obtain an accurate solution within a seemingly small range $0<t<1$. EXPLAIN.

SOLUTION:

