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Introduction 
•  Chapter 8: Subroutines and Control Abstraction 
•  Chapter 9: Data Abstraction and Object Orientation 
•  Chapter 10: Functional Languages 
•  Chapter 11: Logic Languages 
•  Chapter 12: Concurrency 
•  Chapter 13: Scripting Languages 
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Chapter 8: Subroutines and Control Abstraction 
•  Review of Stack Layout 
•  Calling Sequences 
•  Parameter Passing 
•  Generic Subroutines and Modules 
•  Exception Handling 
•  Coroutines 
•  Events 
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Abstraction and Subroutines 
•  Abstraction: a process by which the programmer can 

associate a name with a potentially complicated program 
fragment that can be thought of in terms of its purpose, rather 
than in terms of its implementation: 
•  Control abstraction: performs a well-defined operation. 
•  Data abstraction: representation of information. 

•  Subroutine is a principal mechanism for control abstraction: 
•  Mostly parameterized: 

•  Actual parameters: arguments passed into a subroutine. 
•  Formal parameters: parameters in the subroutine definition. 

•  Function: a subroutine that returns a value. 
•  Procedure: a subroutine that does not return a value. 

•  Subroutines are usually declared before being used. 
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Allocation Strategies 
•  Static: 

•  Code. 
•  Globals. 
•  Own variables. 
•  Explicit constants (including strings, sets, other aggregates). 
•  Small scalars may be stored in the instructions themselves. 

•  Stack: 
•  Parameters. 
•  Local variables. 
•  Temporaries. 
•  Bookkeeping information: return program counter (dynamic link), 

saved registers, line number, saved display entries, static link. 
•  Heap: 

•  Dynamic allocation. 
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Typical Stack Frame 
•  Usually grows downward toward 

lower addresses. 
•  Arguments are accessed as 

positive offsets from the frame 
pointer. 

•  Local variables and 
temporaries are accessed at 
negative offsets from the frame 
pointer. 

•  Arguments to be passed to called routines are assembled at 
the top of the frame using positive offsets from the stack 
pointer. 

6 
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Parameter Modes 
•  Parameter-passing mode and related semantic details are 

heavily influenced by implementation issues. 
•  The two most common parameter-passing modes (mostly for 

languages with a value model of variable): 
•  Call-by-value: each actual parameter is assigned into the 

corresponding formal parameter when a subroutine is called and then 
the two are independent. 

•  Call-by-reference: each formal parameter introduces, within the body 
of subroutine, a new name for the corresponding actual parameter. 
•  Aliases: If the actual parameter is also visible within the subroutine under 

its original name. 
•  The distinction between value and reference parameters is 

fundamentally an implementation issue. 

7 
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Values and Reference Parameters 
•  Call-by-value/result: 

•  Copies the actual parameters into the corresponding formal 
parameters at the beginning of subroutine execution. 

•  Copies the formal parameters back to the corresponding actual 
parameters when the subroutine returns. 

•  Pascal: parameters are passed by value by default. 
•  Reference is preceded by the keyword var. 

•  C: always passed by value. 
•  Fortran: always passed by reference. 
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Generic Subroutines and Modules 
•  Performing the same operation for a variety of different 

objects types. 
•  Provide an explicitly polymorphic generic facility that allows a 

collection of similar subroutines or modules (with different 
types) to be created from a single copy of the source code. 

•  Generic modules (classes): very useful for creating containers 
– data abstractions that hold a collection of objects. 

•  Generic subroutine (methods): needed in generis modules. 
•  Generic parameter: 

•  Java, C#: only types. 
•  Ada, C++: more general, including ordinary types, including 

subroutines and classes. 

9 
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Closures as Parameters 
•  A closure is a reference to a subroutine together with its 

referencing environment. 
•  It may be passed as a parameter. 
•  A closure needs to include both a code address and a 

referencing environment. 
•  Subroutines are routinely passed as parameters (and 

returned as results) in functional languages. 
•  Object closure: in object-oriented language a method is 

packaged with its environment within an explicit object. 
•  C# delegates: provide type safety without the restrictions of 

inheritance. 

10 
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Exception 
•  Exception: an unexpected – or at least unusual – condition 

that arises during program execution, and that cannot easily 
be handled in the local context: 
•  Detected automatically by the language implementation. 
•  Program may raise it explicitly. 

•  The most common exceptions: various run-time errors: 
1.  “Invent” a value that can be used by the caller when a real value 

could not be returned. 
2.  Return an explicit “status” value to the caller, who must inspect it 

after every call (extra parameter in a global variable or encoded as 
otherwise invalid but patterns of function’s regular return value). 

3.  Rely on the caller to pass a closure (if supported) for an error-
handling routine the normal routine can call when it runs into trouble. 

11 
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Coroutines 
•  Coroutines are execution contexts that exist concurrently, but 

that execute one at a time, and that transfer control to each 
other explicitly, by name. 

•   Coroutines can be used to implement: 
•  Iterators (Section 6.5.3). 
•  Threads (to be discussed in Chapter 12). 

•  Coroutines uses transfer operation: saves the current 
program counter in the current coroutine object and resumes 
the coroutine specified as a parameter. 

•  The main body of the program plays the roles of an initial, 
default coroutine. 

12 
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Cactus Stack 
•  Used when two or more corutines are declared in the same 

nonglobal scope: they must share access to objects in that 
scope. 

•  Example: The main stack (MQR) and the coroutines A, B, C 
and D. 
•  Each branch off the stack 

contains the frames of a 
separate coroutine. 

•  The dynamic chain of a 
given coroutine ends in the 
block in which coroutine 
began execution. 

•  The static chain extends 
down into the remainder of 
the cactus. 

13 
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Events 
•  Event is something to which a running program needs to 

respond but which occur outside the program, at an 
unpredictable time (e.g., inputs to GUI). 
•  Synchronous input is generally not acceptable. 

•  An event handler (callback) is invoked (asynchronously) when 
a given event occurs. 

•  Then run-time system calls back into the program instead of 
being called from it. 

14 
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Chapter 9: Data Abstraction and Object Orientation 
•  Object-Oriented Programming 
•  Encapsulation and Inheritance 
•  Initialization and Finalization 
•  Dynamic Method Binding 
•  Multiple Inheritance 
•  Object-Oriented Programming Revisited 

15 
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Data Abstraction Development 
•  We talked about data abstraction some back in the unit on 

naming and scoping. 
•  Recall that we traced the historical development of 

abstraction mechanisms: 
•  Static set of variables: Basic. 
•  Locals: Fortran. 
•  Statics: Fortran, Algol 60, C. 
•  Modules : Modula-2, Ada 83. 
•  Module types: Euclid. 
•  Objects: Smalltalk, C++, Eiffel, Java, Oberon, Modula-3, Ada 95. 

•  Statics allow a subroutine to retain values from one invocation 
to the next, while hiding the name in-between. 

16 
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Modules 
•  Modules allow a collection of subroutines to share some 

statics, still with hiding: 
•  If you want to build an abstract data type, though, you have to make 

the module a manager. 
•  The abstraction provided by modules and module types has 

at least three important benefits: 
•  It reduces conceptual load by minimizing the amount of detail that the 

programmer must deal with. 
•  It provides fault containment: 

•  Prevents the programmer to use a program component the wrong way. 
•  Limits the portion of a program’s text where the component can be used. 

•  It provides a significant degree of independence among program 
components – difficult to achieve. 

17 
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Object-Oriented (OO) Programming 
•  OO Programming can be seen as an attempt to enhance 

opportunities for code reuse by making it easy to define new 
abstractions as extensions or refinements of existing 
abstractions. 

•  Objects add inheritance and dynamic method binding. 
•  Simula 67 introduced these, but didn't have data hiding. 
•  The 3 key factors in OO programming: 

•  Encapsulation (data hiding). 
•  Inheritance. 
•  Dynamic method binding. 

•  The class contains: 
•  Data members (fields). 
•  Subroutine members (methods). 

18 
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Using Classes 
•  Derived (child, subclass) classes – extend class hierarchy by 

creating new classes from base (parent, superclass) classes: 
•  A single root superclass: 

•  Smalltalk, Java: Object. 
•  C++: no such class. 

•  General-purpose base class: contains only the fields and 
methods need to implement common operations. 

•  Modifying base class methods: 
•  Redefinition: exposes implementation details. 
•  Leave the implementation details to the base class by invoking the 

method of the parent class: 
•  Java, Smalltalk, Objective-C use super. 
•  C# uses base. 
•  C++ uses :: (why not super?). 
•  Eiffel: Explicitly rename methods inherited from a base class. 

19 
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Encapsulation and Inheritance 
•  Encapsulation mechanism: 

•  Grouping together in one place data and subroutines that operate on 
them. 

•  Hiding irrelevant details from the users of an abstraction. 
•  OO  programming: 

•  An extension of the “module-as-type” mechanism. 
•  A “module-as-manager” framework. 

•  Data hiding mechanisms of modules in non-object-oriented 
languages. 

•  Data-hiding issues when adding inheritance to make classes. 
•  Adding inheritances to records: allowing (static) modules to 

continue to provide data hiding. 

20 
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Constructors 
•  The lifetime of an object to be the interval during which it 

occupies space and can hold data. 
•  Most object-oriented languages provide some sort of special 

mechanism to initialize an object automatically at the 
beginning of its lifetime. 

•  When written in the form of a subroutine, this mechanism is 
known as a constructor. 

•  A constructor does not allocate space. 
•  A few languages provide a similar destructor mechanism to 

finalize an object automatically at the end of its lifetime. 

21 
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Dynamic Method Binding 
•  Virtual functions in C++ are an example of dynamic method 

binding: you don't know at compile time what type the object 
referred to by a variable will be at run time. 

•  Simula also had virtual functions (all of which are abstract). 
•  In Smalltalk, Eiffel, Modula-3, and Java all member functions 

are virtual. 
•  Note that inheritance does not obviate the need for generics: 

•  You might think: hey, I can define an abstract list class and then 
derive int_list, person_list, etc. from it, but the problem is you won’t be 
able to talk about the elements because you won't know their types. 

•  That's what generics are for: abstracting over types. 
•  Java doesn't have generics, but it does have (checked) 

dynamic casts. 

22 
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Member Lookup 
•  Virtual functions are 

the only thing that 
requires any 
trickiness (Figure). 

•  They are 
implemented by 
creating a dispatch table (vtable) for the class and putting a 
pointer to that table in the data of the object. 

•  Objects of a derived class have a different dispatch table. 
•  In the dispatch table, functions defined in the parent come 

first, though some of the pointers point to overridden versions. 
•  You could put the whole dispatch table in the object itself. 
•  That would save a little time, but potentially waste space. 

23 
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OO Programming Revisited 
•  Anthropomorphism is central to the OO paradigm - you think 

in terms of real-world objects that interact to get things done. 
•  Many OO languages are strictly sequential, but the model 

adapts well to parallelism as well. 
•  Strict interpretation of the term: 

•  Uniform data abstraction: everything is an object. 
•  Inheritance. 
•  Dynamic method binding. 

•  Lots of conflicting uses of the term out there object-oriented 
style available in many languages: 
•  Data abstraction crucial. 
•  Inheritance required by most users of the term object-oriented. 
•  Centrality of dynamic method binding a matter of dispute. 

24 
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Polymorphism 
•  Dynamic method binding introduces subtype polymorphism 

into any code that expects a reference to an object of a 
specific class. 

•  An object of the derived class that supports the operations of 
the base class can be also used. 

•  A combination of inheritance and dynamics methods still does 
not eliminate the need for generics (see Example 9.45): 
•  Needed to avoid tedious type casting. 
•  Needed to avoid potentially unsafe code. 

•  Generics exist for the purpose of abstracting over unrelated 
types, something that inheritance does not support. 

•  Eiffel, Java, and C# also provide generics. 
•  Virtual methods often preclude the in-line expansion of 

subroutines at compile time. 
25 
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Chapter 10: Functional Languages 
•  Historical Origins 
•  Functional Programming Concepts 
•  A Review/Overview of Scheme 
•  Evaluation Order Revisited 
•  Higher-Order Functions 
•  Theoretical Foundations 
•  Functional Programming in Perspective 

26 
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Church’s Model 
•  These results led Church to conjecture that any intuitively 

appealing model of computing would be equally powerful as 
well: this conjecture is known as Church’s thesis. 

•  Church’s model of computing is called the lambda calculus: 
•  Based on the notion of parameterized expressions with each 

parameter introduced by an occurrence of the letter λ — hence the 
notation’s name. 

•  Lambda calculus was the inspiration for functional programming. 
•  One uses it to compute by substituting parameters into expressions, 

just as one computes in a high level functional program by passing 
arguments to functions. 

27 
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Functional Languages 
•  The design of the functional languages is based on 

mathematical functions: 
•  A solid theoretical basis that is also closer to the user, but relatively 

unconcerned with the architecture of the machines on which 
programs will run. 

•  Functional languages such as Lisp, Scheme, FP, ML, 
Miranda, and Haskell are an attempt to realize Church's 
lambda calculus in practical form as a programming language 

•  The key idea: do everything by composing functions: 
•  No mutable state. 
•  No side effects. 

28 



                    Department of Computer Science 

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012) 

Functional Programming Concepts 
•  Necessary features, many of which are missing in some 

imperative languages: 
•  1st class and high-order functions. 
•  Serious polymorphism. 
•  Powerful list facilities. 
•  Structured function returns. 
•  Fully general aggregates. 
•  Garbage collection. 

•  So how do you get anything done in a functional language? 
•  Recursion (especially tail recursion) takes the place of iteration. 
•  In general, you can get the effect of a series of assignments 

        x := 0   ... 
        x := expr1  ... 
        x := expr2  ... 

from f3(f2(f1(0))), where each f expects the value of x as an 
argument, f1 returns expr1, and f2 returns expr2. 

29 
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Higher-Order Functions 
•  Even more important than recursion is the notion of higher-

order functions. 
•  Take a function as argument, or return a function as a result. 
•  Great for building things. 
•  Why higher-order functions are not more common in 

imperative programming languages? 
•  Depends on the ability to create new functions on the fly: we need a 

function constructor – a significant departure from the syntax and 
semantics of traditional imperative languages. 

•  The ability to specify functions as return values or to store them in 
variables requires one of the following: 
•  Eliminate function nesting. 
•  Give local variables unlimited extent. 

30 
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Lisp 
•  The first functional language. 
•  Lisp also has (these are not necessary present in other 

functional languages): 
•  Homo-iconography: Homogeneity of programs and data – a program 

in Lisp is itself a list, and can be manipulated with the same 
mechanisms used to manipulate data. 

•  Self-definition: the operational semantics of Lisp can be defined 
elegantly in terms of an interpreter written in Lisp. 

•  Read-evaluate-print: interaction with the user. 
•  Variants of Lisp: 

•  Pure (original) Lisp. 
•  Interlisp, MacLisp, Emacs Lisp. 
•  Common Lisp. 
•  Scheme. 

31 
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Other Functional Languages 
•  Pure Lisp is purely functional; all other Lisps have imperative 

features. 
•  All early Lisps dynamically scoped:. 

•  Not clear whether this was deliberate or if it happened by accident. 
•  Scheme and Common Lisp statically scoped: 

•  Common Lisp provides dynamic scope as an option for explicitly-
declared special functions. 

•  Common Lisp now THE standard Lisp: 
•  Very big; complicated (The Ada of functional programming). 

•  Scheme is a particularly elegant Lisp. 
•  Other functional languages: ML, Miranda, Haskell, FP. 
•  Haskell is the leading language for research in functional 

programming. 
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Evaluation Order Revisited 
•  Applicative order - evaluate function arguments before 

passing them to a function: 
•  Scheme: functions use applicative order defined with lambda. 
•  What is usually done in imperative languages. 
•  Usually faster. 
•  Scheme use applicative order in most cases. 

•  Normal order - pass function arguments unevaluated: 
•  Scheme: special forms (hygienic macros) use normal order defined 

with syntax-rules. 
•  Arises in the macros and call-by-name parameters of imperative 

languages. 
•  Like call-by-name: don't evaluate argument until you need it. 
•  Sometimes faster. 
•  Terminates if anything will (Church-Rosser theorem). 
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Lazy Evaluation 
•  Lazy evaluation gives the best of both worlds: the advantage 

of normal-order evaluation while running within a constant 
factor of the speed of applicative-order evaluation. 

•  Particularly useful for “infinite” data structures. 
•  Scheme: available through explicit use of delay and force: 

•  delay creates a “promise”. 
•  But not good in the presence of side effects. 

•  If an argument contains a reference to a variable that may be 
modified by an assignment, then the value of the argument will 
depend on whether it is evaluated before or after the assignment. 

•  If the argument contains an assignment, values elsewhere in the 
program may depend on when evaluation occurs. 

•  Scheme requires that every use of delay-ed expression be 
enclosed in force. 
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Perspective: Advantages 
•  Lack of side effects makes programs easier to understand. 
•  Lack of explicit evaluation order (in some languages) offers 

possibility of parallel evaluation (e.g. MultiLisp). 
•  Lack of side effects and explicit evaluation order simplifies 

some things for a compiler (provided you don't blow it in other 
ways). 

•  Programs are often surprisingly short. 
•  Language can be extremely small and yet powerful. 

35 
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Chapter 11: Logic Languages 
•  Logic Programming Concepts 
•  Prolog 
•  Theoretical Foundations 
•  Logic Programming in Perspective 
 

36 
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Logic Programming Concepts 
•  Logic programming systems allow the programmer to state a 

collection of axioms from which theorems can be proven. 
•  Symbolic logic used for the basic needs of formal logic: 

•  Express propositions: logical statements that may or may not be true. 
•  Express relationships between propositions. 
•  Describe how new propositions can be inferred from other 

propositions. 
•  Proposition consists of objects and relationships of objects to 

each other. 
•  Particular form of symbolic logic used for logic programming 

is called first-order predicate logic. 
•  The user of a logic program states a theorem or goal, and the 

language implementation attempts to find a collection of 
axioms and inference steps that together imply the goal. 
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Logic Programming 
•  Based on predicate calculus. 
•  Predicates: building blocks P(a1,a2,...,aK), e.g.: 
limit(f, infinity, 0) 
enrolled(you, CS3304) 
•  These are interesting because we attach meaning to them, but within 

the logical system they are simply structural building blocks, with no 
meaning beyond that provided by explicitly-stated interrelationships. 

•  Operators: conjunction, disjunction, negation, implication. 
•  Universal and existential quantifiers. 
•  Statements: 

•  Sometimes true, sometimes false, often unknown. 
•  Axioms: assumed true. 
•  Theorems: provably true. 
•  Hypotheses (goals): things we'd like to prove true. 
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Prolog 
•  Prolog can be thought of declaratively or imperatively: 

•  We’ll emphasize the declarative semantics for now, because that's 
what makes logic programming interesting. 

•  We'll get into the imperative semantics later. 
•  Prolog allows you to state a bunch of axioms: 

•  Then you pose a query (goal) and the system tries to find a series of 
inference steps (and assignments of values to variables) that allow it 
to prove your query starting from the axioms. 

•  Example statement: 
mother(mary, fred). 
  % you can either think of this as an predicate asserting that 
  % mary is the mother of fred – or a data structure (tree) 
  % in which the functor (atom) mother is the root, 
  % mary is the left child, and fred is the right child 
 
rainy(rochester). 
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Resolution and Unification 
•  Horn clause format: 
H ← B1, B2, …, Bn 

•  Resolution - existing statement are combined, possibly 
canceling terms, to derive new statements: 
C ← A, B 
D ← C 
D ← A, B 

•  Unification – matching terms: 
flowery(X) ← rainy(X) 
rainy(Rochester) 
flowery(Rochester) 
•  Free variable (X) acquires value (Rochester). 
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Search/Execution Order 
•  Bottom-up resolution, forward chaining: 

•  Begin with facts and rules of database and attempt to find sequence 
that leads to goal. 

•  Works well with a large set of possibly correct answers. 
•  Top-down resolution, backward chaining: 

•  Begin with goal and attempt to find sequence that leads to set of facts 
in database. 

•  Works well with a small set of possibly correct answers. 
•  Prolog implementations use backward chaining. 
•  When goal has more than one subgoal, can use either 

•  Depth-first search:  find a complete proof for the first subgoal before 
working on others 

•  Breadth-first search: work on all subgoals in parallel 
•  Prolog uses depth-first search: can be done with fewer computer 

resources. 
41 
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Imperative Control Flow 
•  Cut - a zero-argument predicate ! (exclamation point): 

•  Always succeeds. 
•  Side effect: commits the interpreter to whatever choices have been 

made since unifying the parent goal with the left hand side of the 
current rule. 

•  Example - list membership: 
•  No cut: 
member(X, [X | _]). 
member(X, [_ | T]) :- member(X, T). 

•  Cut: 
member(X, [X | _) :- !. 
member(X, [_ | T]) :- member(X, T). 

•  Alternative: 
member(X, [X | _). 
member(X, [H | T]) :- X \= H, member(X, T). 
•  X \= H means X and H will not unify. 
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Database Manipulation 
•  Prolog is homoiconic: it can represent itself. 
•  It can also modify itself. 

•  Add clause with the built-in predicate assert. 
•  Remove clause with the built-in predicates retract and 
retractall. 

•  clause predicate attempts to match its two arguments against the 
head and body of some existing clause in the database. 

•  Individual terms can be created, or their contents extracted, 
using the built-in predicates functor, arg, and =.. . 
•  functor(T, F, N) succeeds if and only if T is a term with functor 
F and arity N. 

•  arg(N, T, A) succeeds if and only if its first two arguments are 
instantiated, N is a natural number, T is a term, and A is the Nth 
argument of T. 

•  Infix predicate =.. “equates” a term with a list. 
43 
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Theoretical Foundations 
•  In mathematical logic, a predicate is a function that maps 

constants (atoms) or variables to the values true and false.  
•  Predicate calculus provides a notation and inference rules for 

constructing and reasoning about propositions (statements) 
composed of predicate applications, operators, and the 
quantifiers ∀ and ∃.  
•  Operators include and (∧), or (∨), not (¬), implication (→), and 

equivalence (↔).  
•  Quantifiers are used to introduce bound variables in an appended 

proposition, much as λ introduces variables in the lambda calculus. 
•  The universal quantifier, ∀, indicates that the proposition is true for all 

values of the variable. 
•  The existential quantifier, ∃, indicates that the proposition is true for at 

least one value of the variable.  
•  Clausal form provides a unique expression for every preposition. 

44 
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“Closed World” Assumption 
•  Closed world assumption: the database is assumed to 

contain everything that is true. 
•  When the database doe not have information to prove the 

query, the query is assumed to be false. 
•  Prolog can prove that a goal is true but it cannot prove that 

the goal is false. 
•  Assumption: if a goal cannot be proven true, it is false. 
•  Prolog is a true/fail system, not true/false system. 

•  The problem of the closed-world assumption is related to the 
negation problem. 
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Negation 
•  A collection of Horn clauses does not include any things 

assumed to be false: purely “positive” logic. 
•  \+ predicate is different from logical negation – it can 

succeed simply because our current knowledge is insufficient 
to prove it. 

•  Negation in Prolog occurs outside any implicit existential 
quantifiers on the right-hand side of the rule: 
•  \+(takes(X, his201)). where X is uninstantiated means: 
¬∃X[takes(X, his201)] rather than ∃X[¬takes(X, 
his201)] 

•  A complete characterization of the values of X for which 
¬takes(X, his201) is true would require a complete 
exploration of the resolution tree something that Prolog does 
only when all goals fails or when repeatedly prompted with 
semicolons. 46 
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Trace Example 
likes(jake,chocolate). 
likes(jake,apricots). 
likes(darcie,licorice). 
likes(darcie,apricots). 
 
trace. 
likes(jake,X), likes(darcie,X). 
 
(1) 1 Call: likes(jake, _0)? 
(1) 1 Exit: likes(jake, chocolate) 
(2) 1 Call: likes(darcie, chocolate)? 
(2) 1 Fail: likes(darcie, chocolate) 
(1) 1 Redo: likes(jake, _0)? 
(1) 1 Exit: likes(jake, apricots) 
(3) 1 Call: likes(darcie, apricots)? 
(3) 1 Exit: Likes(darcie, apricots) 
 
X = apricots 
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Chapter 12: Concurrency 
•  Background and Motivation 
•  Concurrent Programming Fundamentals 
•  Implementing Synchronization 
•  Language-Level Mechanisms 
•  Message Passing 
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Definitions 
•  Classic von Neumann (stored program) model of computing 

has single thread of control. 
•  Parallel programs have more than one thread of control. 
•  Motivations for concurrency: 

•  To capture the logical structure of a problem. 
•  To exploit extra processors, for speed. 
•  To cope with separate physical devices. 

•  Concurrent: any system in which two or more tasks may be 
underway (at an unpredictable point in their execution). 

•  Concurrent and parallel: more than one task can by physically 
active at once (more than one processor). 

•  Concurrent, parallel and distributed: processors are 
associated with the devices physically separated in the real 
world. 
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Process 
•  A process or thread is a potentially-active execution context. 
•  Processes/threads can come from: 

•  Multiple CPUs. 
•  Kernel-level multiplexing of single physical machine. 
•  Language or library level multiplexing of kernel-level abstraction. 

•  They can run:  
•  In true parallel. 
•  Unpredictably interleaved. 
•  Run-until-block. 

•  Most work focuses on the first two cases, which are equally 
difficult to deal with. 

•  A process could be thought of as an abstraction of a physical 
processor. 
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Race Conditions 
•  A race condition occurs when actions in two processes are 

not synchronized and program behavior depends on the order 
in which the actions happen. 

•  Race conditions are not all bad; sometimes any of the 
possible program outcomes are ok (e.g. workers taking things 
off a task queue). 

•  Race conditions (we want to avoid race conditions): 
•  Suppose processors A and B share memory, and both try to 

increment variable X at more or less the same time 
•  Very few processors support arithmetic operations on memory, so 

each processor executes 
LOAD X 
INC 
STORE X 

•  If both processors execute these instructions simultaneously X could 
go up by one or by two. 

51 



                    Department of Computer Science 

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012) 

Synchronization 
•  Synchronization is the act of ensuring that events in different 

processes happen in a desired order. 
•  Synchronization can be used to eliminate race conditions  
•  In our example we need to synchronize the increment 

operations to enforce mutual exclusion on access to X. 
•  Most synchronization can be regarded as one of the 

following: 
•  Mutual exclusion: making sure that only one process is executing a 

critical section (e.g., touching a variable) at a time. 
•  Usually using  a mutual exclusion lock (acquire/release). 

•  Condition synchronization: making sure that a given process does not 
proceed until some condition holds (e.g., that a variable contains a 
given value). 
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Shared Memory 
•  To implement synchronization you have to have something 

that is atomic: 
•  That means it happens all at once, as an indivisible action. 
•  In most machines, reads and writes of individual memory locations 

are atomic (note that this is not trivial; memory and/or busses must be 
designed to arbitrate and serialize concurrent accesses). 

•  In early machines, reads and writes of individual memory locations 
were all that was atomic. 

•  To simplify the implementation of  mutual exclusion, hardware 
designers began in the late 60's to build so-called read-
modify-write, or fetch-and-phi, instructions into their 
machines. 
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Concurrent Programming Fundamentals 
•  Thread: an active entity that the programmer thinks of as 

running concurrently with other threads. 
•  Built on top of one or more processes provided by the 

operating system: 
•  Heavyweight process: has its own address space. 
•  Lightweight processes: share an address space. 

•  Task: a well defined unit of work that must be performed by 
some thread: 
•  A collection of threads share a common “bag of tasks”. 

•  Terminology inconsistent across systems and authors. 
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Communication and Synchronization 
•  Communication - any mechanism that allows one thread to 

obtain information produced by another: 
•  Shared memory: program’s variables accessible to multiple threads. 
•  Message passing: threads have no common state. 

•  Synchronization – any mechanism that allows the 
programmer to control the relative order in which operations 
occur on different threads. 
•  Shared memory: not implicit, requires special constructs. 
•  Message passing: implicit. 

•  Synchronization implementation: 
•  Spinning (busy-waiting): a thread runs in a loop reevaluating some 

condition (makes no sense on uniprocessor). 
•  Blocking (scheduler-based): the waiting thread voluntarily 

relinquishes its processor to some other thread (needed a data 
structure associated with the synchronization action). 
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Thread Creation Syntax 
•  Six principal options: 

•  Co-begin. 
•  Parallel loops. 
•  Launch-at-Elaboration. 
•  Fork/Join. 
•  Implicit Receipt. 
•  Early Reply. 

•  The first two options delimit thread with special control-flow 
constructs. 

•  SR language provides all six options. 
•  Java, C# and most libraries: fork/join. 
•  Ada: launch-at-elaboration and fork/join. 
•  OpenMP: co-being and parallel loops. 
•  RPC systems: implicit receipt. 
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Implementation of Threads 
•  The threads: usually implemented on top of one or more 

processes provided by the operating system. 
•  Every thread a separate process: 

•  Processes are too expensive. 
•  Requires a system call. 
•  Provide features are seldom used (e.g., priorities). 

•  All thread in a single process: 
•  Precludes parallel execution on a multicore or multiprocessor 

machine. 
•  If the currently running thread makes a system call that blocks, then 

none of the program’s other threads can run. 
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Two-Level Thread Implementation 
•  User level threads on top of kernel-level processes: 

•  Similar code appears at both level of the system: 
•  The language run-time system implements threads on top of one or more 

processes. 
•  The operating system implements processes on top of one or more 

physical processors. 
•  The typical implementation starts with coroutines. 
•  Turning coroutines into threads: 

•  Hide the argument to  transfer by 
implementing scheduler. 

•  Implement a preemption 
mechanisms. 

•  Allow data structure sharing. 
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Uniprocessor Scheduling 
•  A thread is either blocked or runnable: 

•  current_thread: thread running “on a process”. 
•  ready_list: a queue for runnable thread. 
•  Waiting queues: queus for threads blocked waiting for conditions. 
•  Fairness: each thread gets a frequent “slice” of the processor. 

•  Cooperative multithreading: any long-running thread must 
yield the processor explicitly from time to time. 

•  Schedulers: ability to "put a thread/process to sleep" and run 
something else: 
•  Start with coroutines. 
•  Make uniprocessor 

run-until-block threads. 
•  Add preemption. 
•  Add multiple processors. 
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Multiprocessors Scheduling 
•  True or quasi parallelism introduces race between calls in 

separate OS processes. 
•  Additional synchronization needed to make scheduler 

operations in separate processes atomic: 
procedure yield: 
        disable_signals 
        acquire(scheduler_lock)        // spin lock 
        enqueue(ready_list, current) 
        reschedule 
        release(scheduler_lock) 
        re-enable_signals 
 
disable_signals 
acquire(scheduler_lock)        // spin lock 
if not <desired condition> 
        sleep_on <condition queue> 
release(scheduler_lock) 
re-enable signals 
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Implementing Synchronization 
•  Typically, synchronization is used to: 

•  Make some operation atomic. 
•  Delay that operation until some necessary precondition holds. 

•  Atomicity: usually achieved with mutual exclusion locks. 
•  Mutual exclusion ensures that only one thread is executing some 

critical section of code at given point in time: 
•  Much early research was devoted to figuring out how to build it from 

simple atomic reads and writes. 
•  Dekker is generally credited with finding the first correct solution for 

two threads in the early 1960s. 
•  Dijkstra: a version that works for n threads in 1965. 
•  Peterson: a much simpler two-thread solution in 1981. 

•  Condition synchronization: allows a thread to wait for a 
precondition: e.g. a predicate on the value(s) in one or more 
shared variables. 
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Semaphores 
•  A semaphore is a special counter: 

•  Has an initial value and two operations, P and V, for changing value. 
•  A semaphore keeps track of the difference between the number of P 

and V operations that have occurred. 
•  A P operation is delayed (the process is de-scheduled) until #P-#V <= 

C, the initial value of the semaphore. 
•  The semaphores are generally fair, i.e., the processes 

complete P operations in the same order they start them 
•  Problems with semaphores: 

•  They're pretty low-level: 
•  When using them for mutual exclusion, it's easy to forget a P or a V, 

especially when they don't occur in strictly matched pairs. 
•  Their use is scattered all over the place:  

•  If you want to change how processes synchronize access to a data 
structure, you have to find all the places in the code where they touch 
that structure, which is difficult and error-prone 
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Monitors 
•  Suggested by Dijkstra as a solution to the problems of 

semaphores (languages Concurrent Pascal, Modula, Mesa). 
•  Monitor is a module or object with operations, internal state, 

and a number of condition variables: 
•  Only one operation of a given monitor is allowed to be active at  a 

given point in time (programmers are relieved of the responsibility of 
using P and V operations correctly). 

•  A thread that calls a busy monitor is automatically delayed until the 
monitor is free. 

•  An operation can suspend itself by waiting on a condition variable 
(not the same as semaphores – no memory). 

•  All operations on the encapsulated data , including synchronization, 
are collected together. 

•  Monitors have the highest-level semantics, but a few sticky 
semantic problem - they are also widely used. 
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Conditional Critical Regions 
•  Proposed as an alternative to semaphores by Brinch Hansen. 
•  Critical region - a syntactically delimited critical section in 

which the code is permitted to access a protected variable: 
•  Specifies a Boolean condition that must be true before control enters: 

region protected_variable, when Boolean_condition do 
  … 
end region 

•  No thread can access the protected variable except within a region 
statement. 

•  Any thread that reaches a region statement waits until the condition is 
true and no other is currently in a region for the same variable. 

•  Nesting regions: a deadlock is possible. 
•  Languages – Edison: 

•  Influenced synchronization mechanism of Ada 95, Java, and C#. 
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Message Passing 
•  Most concurrent programming on large multicomputers and 

net- works is currently based on messages. 
•  To send/receive a message, one must generally specify 

where to send it to, or where to receive it from: 
communication partners need names for one another: 
•  Addressing messages to processes: Hoare’s CSP (Communicating 

Sequential Processes). 
•  Addressing messages to ports: Ada. 
•  Addressing messages to channels: Occam. 

•  Ada’s comparatively high-level semantics for parameter 
modes allows the same set of modes to be used for both 
subroutines and entries (rendezvous). 

•  Some concurrent languages provide parameter modes 
specifically designed with remote invocation in mind. 
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Transactional Memory 
•  Locks (semaphors, monitors, CCRs) make it easy to write 

data-race free programs but they do not scale: 
•  Adding processors and threads: the lock becomes a bottleneck. 
•  We can partition program data into equivalence classes: a critical 

section must acquire lock for every accessed equivalence class. 
•  Different critical sections may locks in different orders: deadlock can 

result. 
•  Enforcing a common order can be difficult. 

•  Locks may be too low level a mechanism. 
•  The mapping between locks and critical sections is an 

implementation detail from a semantic point of view: 
•  We really want is a composable atomic construct: transactional 

memory (TM). 
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Chapter 13: Scripting Languages 
•  What is a Scripting Language? 
•  Problem Domains 
•  Scripting the World Wide Web 
•  Innovative Features 
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Scripting Language 
•  Modern scripting languages have two principal sets of 

ancestors: 
•  Command interpreters or “shells” of traditional batch and 

“terminal” (command-line) computing: 
•  IBM’s JCL, MS-DOS command interpreter, Unix sh and csh. 

•  Various tools for text processing and report generation 
•  IBM’s RPG, and Unix’s sed and awk. 

•  From these evolved: 
•  Rexx: IBM’s “Restructured Extended Executor,” dates from 1979. 
•  Perl: originally devised by Larry Wall in the late 1980s, and now the 

most widely used general purpose scripting language.  
•  Other general purpose scripting languages include Tcl (“tickle”), 

Python, Ruby, VBScript (for Windows) and AppleScript (for the Mac). 
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Common Characteristics 
•  Both batch and interactive use. 
•  Economy of expression: avoid the extensive declarations and 

top-level structure. 
•  Lack of declarations; simple scoping rules. 
•  Flexible dynamic typing. 
•  Easy access to system facilities (other programs). 
•  Sophisticated pattern matching and string manipulation: 

usually extended regular expressions. 
•  High level data types: frequently built into the syntax and 

semantics of the language itself. 
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Shell (Command) Languages 
•  They have features designed for interactive use. 
•  Provide mechanisms to manipulate file names, arguments, 

and commands, and to glue together other programs: 
•  Most of these features are retained by more general scripting 

languages. 
•  We use bash Unix shell to illustrate these features. 
•  There is also csh family of shells. 

•  We consider a few of them - full details can be found in the 
bash man page, or in various on-line tutorials: 
•  Filename and Variable Expansion. 
•  Tests, Queries, and Conditions. 
•  Pipes and Redirection. 
•  Quoting and Expansion. 
•  Functions. 
•  The #! Convention. 
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Text Processing / Report Generation 
•  Shell languages tend to be heavily string-oriented. 

•  Commands are strings parsed into lists of words. 
•  Variables are string-valued. 
•  Not intended for editor-like text operations (e.g., emacs or vi). 

•  Tools needed to provide for search, substitution, etc.: 
•  The second principal class of ancestors for modern scripting 

languages. 
•  Some representative tools: 

•  sed 
•  awk 
•  Perl 
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Mathematics and Statistics 
•  A one-line mathematics and statistics computation 
•  APL - A Programming Language: 

•  Interactive, matrix oriented. 
•  Concise expression of mathematical algorithms. 
•  Code structured as a sequence of unary/binary operators/functions 

acting on matrices/arrays. 
•  A large number of special characters for operators: x[⍋x←6?40] 

•  Modern successors: 
•  Mathematical computing: Maple, Mathematica, and Matlab. 
•  Statistical computing: S and R. 
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“Glue” Languages / General Purpose Scripting 
•  Scripting languages - shell- and text-processing mechanisms: 

•  Can prepare input and parse output from processes. 
•  An extensive library of built-in operations to access the 

features of underlying OS. 
•  Rich set of features for internal computation: 

•  Arbitrary precision arithmetic (Python, Ruby). 
•  Higher-level types. 
•  Modules and dynamic loading (Perl, Tcl, Python, Ruby). 

•  The philosophy of general-purpose scripting is to make it as 
easy as possible to construct the overall framework of a 
program: 
•  External tools are used only for special-purpose tasks. 
•  Compiled languages only when performance is at a premium. 
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Extension Languages 
•  Most applications accept some sort of commands: 

•  These commands are entered textually or triggered by user interface 
events such as mouse clicks, menu selections, and keystrokes. 

•  Commands in a graphical drawing program might save or load a 
drawing; select, insert, delete, or modify its parts; choose a line style, 
weight, or color; zoom/rotate the display; or modify user preferences. 

•  An extension language serves to increase the usefulness of 
an application by allowing the user to create new commands, 
generally using the existing commands as primitives. 

•  Increasingly seen as an essential  feature: 
•  Adobe’s graphics suite (Illustrator, etc.) can be extended (scripted) 

using JavaScript, Visual Basic (on Windows), or AppleScript. 
•  AOLserver, an open-source web server from America On-Line, can 

be scripted using Tcl. Disney and Industrial Light and Magic use 
Python to extend their internal (proprietary) tools. 
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World Wide Web 
•  Dynamically created World Wide Web content: 

•  Does the script that creates the content run on the server or the client 
machine? 

•  Server-side and client-side web scripting. 
•  Server side scripting: used when the service provided wants 

to retain complete control over the content of the page but 
does not create the content in advance (e.g., search engines, 
Internet retailers). 

•  Client-side scripts are typically used for tasks that don’t need 
access to proprietary information, and are more efficient if 
executed on the client’s machine (e.g., interactive animation, 
error-checking, fill-in forms). 
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CGI Scripts 
•  The original mechanism for server-side web scripting is the 

Common Gateway Interface (CGI). 
•  A CGI script is an executable program residing in a special 

directory known to the web server program. 
•  When a client requests the URI corresponding to such a 

program, the server executes the program and sends its 
output back to the client: 
•  This output needs to be something that the browser will understand: 

typically HTML. 
•  CGI scripts may be written in any language available: 

•  Perl is particularly popular:  
•  Its string-handling and “glue” mechanisms are suited to generating 

HTML. 
•  It was already widely available during the early years of the web. 
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Embedded Server-Side Scripts 
•  Though widely used, CGI scripts have several disadvantages: 

•  The web server must launch each script as a separate program, with 
potentially significant overhead (though, CGI script compiled to native 
code can be very fast once running). 

•  Scripts must generally be installed in a trusted directory by trusted 
system administrators (they cannot reside in arbitrary locations as 
ordinary pages do). 

•  The name of the script appears in the URI, typically prefixed with the 
name of the trusted directory, so static and dynamic pages look 
different to end users. 

•  Each script must generate not only dynamic content, but also the 
HTML tags that are needed to format and display it (his extra 
“boilerplate” makes scripts more difficult to write). 

•  Most web servers now use a “module loading” mechanism 
that allows interpreters for one or more scripting languages. 
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Client Side Scripts 
•  Embedded server-side scripts are generally faster than CGI 

script, at least when startup cost predominates: 
•  Communication across the Internet is still too slow for interactive 

pages. 
•  Because they run on the web designer’s site, CGI scripts and, 

to a lesser extent, embeddable server-side scripts can be 
written in many different languages: 
•  All the client ever sees is standard HTML.  

•  Client-side scripts, by contrast, require an interpreter on the 
client’s machine: 
•  There is a powerful incentive for convergence in client-side scripting 

languages: most designers want their pages to be viewable by as 
wide an audience as possible. 
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JavaScript 
•  While Visual Basic is widely used within specific organizations  

- all the clients of interest are known to run Internet Explorer. 
•  Pages intended for the general public almost always use 

JavaScript for interactive features: 
•  Developed by Netscape in the mid 1990s. 
•  All major browser implement JavaScript. 
•  Standardized by ECMA (the European standards body) in 1999. 

•  The HTML Document Object Model (DOM) standardized by 
the World Wide Web Consortium specifies a very large 
number of elements, attributes, and user actions, all of which 
are accessible in JavaScript: 
•  Scripts can, at appropriate times, inspect or later almost any aspect of 

the content, structure, or style of a page. 
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Java Applets 
•  An applet is a program designed to run inside some other 

program. 
•  The term is most often used for Java programs that display 

their output in (a portion of) a web page: 
•  Does not produce HTML output. 
•  Directly controls a portion of the page. 
•  Java GUI libraries (Swing or AWT) are used to display information. 

•  To support he execution of applets, most modern browsers 
contain a Java virtual machine. 

•  Subject to certain restrictions (security). 
•  Mostly do not interact with the browser or other programs so 

they generally not considered a scripting mechanism. 
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XSLT 
•  XML  (extensible markup language) is a more recent and 

general language in which to capture structured data: 
•  More regular and consistent syntax and semantics (compared to 

HTML). 
•  Extensibility: users can define their own tags. 
•  Clear distinction between the content of a document (the data 

it captures) and the presentation of that data. 
•  Presentation is deferred to a companion standard known as 

XSL (extensible stylesheet language). 
•  XSLT is a portion of XSL devoted to transforming XML: 

•  Selecting, reorganizing, and modifying tags and the elements they 
delimit. 

•  Scripting the processing of data represented in XML. 
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Features of Scripting Languages 
1.  Both batch and interactive use. 
2.  Economy of expression. 
3.  Lack of declarations; simple scoping rules. 
4.  Flexible dynamic typing. 
5.  Easy access to other programs. 
6.  Sophisticated pattern matching and string manipulation. 
7.  High level data types. 
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Object Orientation 
•  Perl 5 has features that allow one to program in an object-

oriented style. 
•  PHP and JavaScript have cleaner, more conventional-looking 

object-oriented features: 
•  Both allow the programmer to use a more traditional imperative style. 

•  Python and Ruby are explicitly and uniformly object-oriented. 
•  Perl uses a value model for variables; objects are always 

accessed via pointers. 
•  In PHP and JavaScript, a variable can hold either a value of a 

primitive type or a reference to an object of composite type: 
•  In contrast to Perl, however, these languages provide no way to 

speak of the reference itself, only the object to which it refers. 
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Summary 
•  This lectures provide overview of the Chapters 8-13. 
•  The material covered presents most, but not all the topics 

from Chapters 8-13 that will be covered in the final exam. 
•  Chapters 8-13 related material will constitute 80% of the final 

exam. 
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