
 Department of Computer Science

© 2012 Denis Gracanin

CS 3304
Comparative Languages

Lecture 28a:
Chapters 8-13 Review

28 April 2012

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Introduction
•  Chapter 8: Subroutines and Control Abstraction
•  Chapter 9: Data Abstraction and Object Orientation
•  Chapter 10: Functional Languages
•  Chapter 11: Logic Languages
•  Chapter 12: Concurrency
•  Chapter 13: Scripting Languages

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 8: Subroutines and Control Abstraction
•  Review of Stack Layout
•  Calling Sequences
•  Parameter Passing
•  Generic Subroutines and Modules
•  Exception Handling
•  Coroutines
•  Events

3

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Abstraction and Subroutines
•  Abstraction: a process by which the programmer can

associate a name with a potentially complicated program
fragment that can be thought of in terms of its purpose, rather
than in terms of its implementation:
•  Control abstraction: performs a well-defined operation.
•  Data abstraction: representation of information.

•  Subroutine is a principal mechanism for control abstraction:
•  Mostly parameterized:

•  Actual parameters: arguments passed into a subroutine.
•  Formal parameters: parameters in the subroutine definition.

•  Function: a subroutine that returns a value.
•  Procedure: a subroutine that does not return a value.

•  Subroutines are usually declared before being used.

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Allocation Strategies
•  Static:

•  Code.
•  Globals.
•  Own variables.
•  Explicit constants (including strings, sets, other aggregates).
•  Small scalars may be stored in the instructions themselves.

•  Stack:
•  Parameters.
•  Local variables.
•  Temporaries.
•  Bookkeeping information: return program counter (dynamic link),

saved registers, line number, saved display entries, static link.
•  Heap:

•  Dynamic allocation.

5

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Typical Stack Frame
•  Usually grows downward toward

lower addresses.
•  Arguments are accessed as

positive offsets from the frame
pointer.

•  Local variables and
temporaries are accessed at
negative offsets from the frame
pointer.

•  Arguments to be passed to called routines are assembled at
the top of the frame using positive offsets from the stack
pointer.

6

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Parameter Modes
•  Parameter-passing mode and related semantic details are

heavily influenced by implementation issues.
•  The two most common parameter-passing modes (mostly for

languages with a value model of variable):
•  Call-by-value: each actual parameter is assigned into the

corresponding formal parameter when a subroutine is called and then
the two are independent.

•  Call-by-reference: each formal parameter introduces, within the body
of subroutine, a new name for the corresponding actual parameter.
•  Aliases: If the actual parameter is also visible within the subroutine under

its original name.
•  The distinction between value and reference parameters is

fundamentally an implementation issue.

7

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Values and Reference Parameters
•  Call-by-value/result:

•  Copies the actual parameters into the corresponding formal
parameters at the beginning of subroutine execution.

•  Copies the formal parameters back to the corresponding actual
parameters when the subroutine returns.

•  Pascal: parameters are passed by value by default.
•  Reference is preceded by the keyword var.

•  C: always passed by value.
•  Fortran: always passed by reference.

8

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Generic Subroutines and Modules
•  Performing the same operation for a variety of different

objects types.
•  Provide an explicitly polymorphic generic facility that allows a

collection of similar subroutines or modules (with different
types) to be created from a single copy of the source code.

•  Generic modules (classes): very useful for creating containers
– data abstractions that hold a collection of objects.

•  Generic subroutine (methods): needed in generis modules.
•  Generic parameter:

•  Java, C#: only types.
•  Ada, C++: more general, including ordinary types, including

subroutines and classes.

9

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Closures as Parameters
•  A closure is a reference to a subroutine together with its

referencing environment.
•  It may be passed as a parameter.
•  A closure needs to include both a code address and a

referencing environment.
•  Subroutines are routinely passed as parameters (and

returned as results) in functional languages.
•  Object closure: in object-oriented language a method is

packaged with its environment within an explicit object.
•  C# delegates: provide type safety without the restrictions of

inheritance.

10

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Exception
•  Exception: an unexpected – or at least unusual – condition

that arises during program execution, and that cannot easily
be handled in the local context:
•  Detected automatically by the language implementation.
•  Program may raise it explicitly.

•  The most common exceptions: various run-time errors:
1.  “Invent” a value that can be used by the caller when a real value

could not be returned.
2.  Return an explicit “status” value to the caller, who must inspect it

after every call (extra parameter in a global variable or encoded as
otherwise invalid but patterns of function’s regular return value).

3.  Rely on the caller to pass a closure (if supported) for an error-
handling routine the normal routine can call when it runs into trouble.

11

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Coroutines
•  Coroutines are execution contexts that exist concurrently, but

that execute one at a time, and that transfer control to each
other explicitly, by name.

•  Coroutines can be used to implement:
•  Iterators (Section 6.5.3).
•  Threads (to be discussed in Chapter 12).

•  Coroutines uses transfer operation: saves the current
program counter in the current coroutine object and resumes
the coroutine specified as a parameter.

•  The main body of the program plays the roles of an initial,
default coroutine.

12

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Cactus Stack
•  Used when two or more corutines are declared in the same

nonglobal scope: they must share access to objects in that
scope.

•  Example: The main stack (MQR) and the coroutines A, B, C
and D.
•  Each branch off the stack

contains the frames of a
separate coroutine.

•  The dynamic chain of a
given coroutine ends in the
block in which coroutine
began execution.

•  The static chain extends
down into the remainder of
the cactus.

13

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Events
•  Event is something to which a running program needs to

respond but which occur outside the program, at an
unpredictable time (e.g., inputs to GUI).
•  Synchronous input is generally not acceptable.

•  An event handler (callback) is invoked (asynchronously) when
a given event occurs.

•  Then run-time system calls back into the program instead of
being called from it.

14

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 9: Data Abstraction and Object Orientation
•  Object-Oriented Programming
•  Encapsulation and Inheritance
•  Initialization and Finalization
•  Dynamic Method Binding
•  Multiple Inheritance
•  Object-Oriented Programming Revisited

15

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Data Abstraction Development
•  We talked about data abstraction some back in the unit on

naming and scoping.
•  Recall that we traced the historical development of

abstraction mechanisms:
•  Static set of variables: Basic.
•  Locals: Fortran.
•  Statics: Fortran, Algol 60, C.
•  Modules : Modula-2, Ada 83.
•  Module types: Euclid.
•  Objects: Smalltalk, C++, Eiffel, Java, Oberon, Modula-3, Ada 95.

•  Statics allow a subroutine to retain values from one invocation
to the next, while hiding the name in-between.

16

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Modules
•  Modules allow a collection of subroutines to share some

statics, still with hiding:
•  If you want to build an abstract data type, though, you have to make

the module a manager.
•  The abstraction provided by modules and module types has

at least three important benefits:
•  It reduces conceptual load by minimizing the amount of detail that the

programmer must deal with.
•  It provides fault containment:

•  Prevents the programmer to use a program component the wrong way.
•  Limits the portion of a program’s text where the component can be used.

•  It provides a significant degree of independence among program
components – difficult to achieve.

17

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Object-Oriented (OO) Programming
•  OO Programming can be seen as an attempt to enhance

opportunities for code reuse by making it easy to define new
abstractions as extensions or refinements of existing
abstractions.

•  Objects add inheritance and dynamic method binding.
•  Simula 67 introduced these, but didn't have data hiding.
•  The 3 key factors in OO programming:

•  Encapsulation (data hiding).
•  Inheritance.
•  Dynamic method binding.

•  The class contains:
•  Data members (fields).
•  Subroutine members (methods).

18

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Using Classes
•  Derived (child, subclass) classes – extend class hierarchy by

creating new classes from base (parent, superclass) classes:
•  A single root superclass:

•  Smalltalk, Java: Object.
•  C++: no such class.

•  General-purpose base class: contains only the fields and
methods need to implement common operations.

•  Modifying base class methods:
•  Redefinition: exposes implementation details.
•  Leave the implementation details to the base class by invoking the

method of the parent class:
•  Java, Smalltalk, Objective-C use super.
•  C# uses base.
•  C++ uses :: (why not super?).
•  Eiffel: Explicitly rename methods inherited from a base class.

19

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Encapsulation and Inheritance
•  Encapsulation mechanism:

•  Grouping together in one place data and subroutines that operate on
them.

•  Hiding irrelevant details from the users of an abstraction.
•  OO programming:

•  An extension of the “module-as-type” mechanism.
•  A “module-as-manager” framework.

•  Data hiding mechanisms of modules in non-object-oriented
languages.

•  Data-hiding issues when adding inheritance to make classes.
•  Adding inheritances to records: allowing (static) modules to

continue to provide data hiding.

20

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Constructors
•  The lifetime of an object to be the interval during which it

occupies space and can hold data.
•  Most object-oriented languages provide some sort of special

mechanism to initialize an object automatically at the
beginning of its lifetime.

•  When written in the form of a subroutine, this mechanism is
known as a constructor.

•  A constructor does not allocate space.
•  A few languages provide a similar destructor mechanism to

finalize an object automatically at the end of its lifetime.

21

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Dynamic Method Binding
•  Virtual functions in C++ are an example of dynamic method

binding: you don't know at compile time what type the object
referred to by a variable will be at run time.

•  Simula also had virtual functions (all of which are abstract).
•  In Smalltalk, Eiffel, Modula-3, and Java all member functions

are virtual.
•  Note that inheritance does not obviate the need for generics:

•  You might think: hey, I can define an abstract list class and then
derive int_list, person_list, etc. from it, but the problem is you won’t be
able to talk about the elements because you won't know their types.

•  That's what generics are for: abstracting over types.
•  Java doesn't have generics, but it does have (checked)

dynamic casts.

22

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Member Lookup
•  Virtual functions are

the only thing that
requires any
trickiness (Figure).

•  They are
implemented by
creating a dispatch table (vtable) for the class and putting a
pointer to that table in the data of the object.

•  Objects of a derived class have a different dispatch table.
•  In the dispatch table, functions defined in the parent come

first, though some of the pointers point to overridden versions.
•  You could put the whole dispatch table in the object itself.
•  That would save a little time, but potentially waste space.

23

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

OO Programming Revisited
•  Anthropomorphism is central to the OO paradigm - you think

in terms of real-world objects that interact to get things done.
•  Many OO languages are strictly sequential, but the model

adapts well to parallelism as well.
•  Strict interpretation of the term:

•  Uniform data abstraction: everything is an object.
•  Inheritance.
•  Dynamic method binding.

•  Lots of conflicting uses of the term out there object-oriented
style available in many languages:
•  Data abstraction crucial.
•  Inheritance required by most users of the term object-oriented.
•  Centrality of dynamic method binding a matter of dispute.

24

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Polymorphism
•  Dynamic method binding introduces subtype polymorphism

into any code that expects a reference to an object of a
specific class.

•  An object of the derived class that supports the operations of
the base class can be also used.

•  A combination of inheritance and dynamics methods still does
not eliminate the need for generics (see Example 9.45):
•  Needed to avoid tedious type casting.
•  Needed to avoid potentially unsafe code.

•  Generics exist for the purpose of abstracting over unrelated
types, something that inheritance does not support.

•  Eiffel, Java, and C# also provide generics.
•  Virtual methods often preclude the in-line expansion of

subroutines at compile time.
25

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 10: Functional Languages
•  Historical Origins
•  Functional Programming Concepts
•  A Review/Overview of Scheme
•  Evaluation Order Revisited
•  Higher-Order Functions
•  Theoretical Foundations
•  Functional Programming in Perspective

26

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Church’s Model
•  These results led Church to conjecture that any intuitively

appealing model of computing would be equally powerful as
well: this conjecture is known as Church’s thesis.

•  Church’s model of computing is called the lambda calculus:
•  Based on the notion of parameterized expressions with each

parameter introduced by an occurrence of the letter λ — hence the
notation’s name.

•  Lambda calculus was the inspiration for functional programming.
•  One uses it to compute by substituting parameters into expressions,

just as one computes in a high level functional program by passing
arguments to functions.

27

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Functional Languages
•  The design of the functional languages is based on

mathematical functions:
•  A solid theoretical basis that is also closer to the user, but relatively

unconcerned with the architecture of the machines on which
programs will run.

•  Functional languages such as Lisp, Scheme, FP, ML,
Miranda, and Haskell are an attempt to realize Church's
lambda calculus in practical form as a programming language

•  The key idea: do everything by composing functions:
•  No mutable state.
•  No side effects.

28

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Functional Programming Concepts
•  Necessary features, many of which are missing in some

imperative languages:
•  1st class and high-order functions.
•  Serious polymorphism.
•  Powerful list facilities.
•  Structured function returns.
•  Fully general aggregates.
•  Garbage collection.

•  So how do you get anything done in a functional language?
•  Recursion (especially tail recursion) takes the place of iteration.
•  In general, you can get the effect of a series of assignments

 x := 0 ...
 x := expr1 ...
 x := expr2 ...

from f3(f2(f1(0))), where each f expects the value of x as an
argument, f1 returns expr1, and f2 returns expr2.

29

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Higher-Order Functions
•  Even more important than recursion is the notion of higher-

order functions.
•  Take a function as argument, or return a function as a result.
•  Great for building things.
•  Why higher-order functions are not more common in

imperative programming languages?
•  Depends on the ability to create new functions on the fly: we need a

function constructor – a significant departure from the syntax and
semantics of traditional imperative languages.

•  The ability to specify functions as return values or to store them in
variables requires one of the following:
•  Eliminate function nesting.
•  Give local variables unlimited extent.

30

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Lisp
•  The first functional language.
•  Lisp also has (these are not necessary present in other

functional languages):
•  Homo-iconography: Homogeneity of programs and data – a program

in Lisp is itself a list, and can be manipulated with the same
mechanisms used to manipulate data.

•  Self-definition: the operational semantics of Lisp can be defined
elegantly in terms of an interpreter written in Lisp.

•  Read-evaluate-print: interaction with the user.
•  Variants of Lisp:

•  Pure (original) Lisp.
•  Interlisp, MacLisp, Emacs Lisp.
•  Common Lisp.
•  Scheme.

31

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Other Functional Languages
•  Pure Lisp is purely functional; all other Lisps have imperative

features.
•  All early Lisps dynamically scoped:.

•  Not clear whether this was deliberate or if it happened by accident.
•  Scheme and Common Lisp statically scoped:

•  Common Lisp provides dynamic scope as an option for explicitly-
declared special functions.

•  Common Lisp now THE standard Lisp:
•  Very big; complicated (The Ada of functional programming).

•  Scheme is a particularly elegant Lisp.
•  Other functional languages: ML, Miranda, Haskell, FP.
•  Haskell is the leading language for research in functional

programming.

32

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Evaluation Order Revisited
•  Applicative order - evaluate function arguments before

passing them to a function:
•  Scheme: functions use applicative order defined with lambda.
•  What is usually done in imperative languages.
•  Usually faster.
•  Scheme use applicative order in most cases.

•  Normal order - pass function arguments unevaluated:
•  Scheme: special forms (hygienic macros) use normal order defined

with syntax-rules.
•  Arises in the macros and call-by-name parameters of imperative

languages.
•  Like call-by-name: don't evaluate argument until you need it.
•  Sometimes faster.
•  Terminates if anything will (Church-Rosser theorem).

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Lazy Evaluation
•  Lazy evaluation gives the best of both worlds: the advantage

of normal-order evaluation while running within a constant
factor of the speed of applicative-order evaluation.

•  Particularly useful for “infinite” data structures.
•  Scheme: available through explicit use of delay and force:

•  delay creates a “promise”.
•  But not good in the presence of side effects.

•  If an argument contains a reference to a variable that may be
modified by an assignment, then the value of the argument will
depend on whether it is evaluated before or after the assignment.

•  If the argument contains an assignment, values elsewhere in the
program may depend on when evaluation occurs.

•  Scheme requires that every use of delay-ed expression be
enclosed in force.

34

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Perspective: Advantages
•  Lack of side effects makes programs easier to understand.
•  Lack of explicit evaluation order (in some languages) offers

possibility of parallel evaluation (e.g. MultiLisp).
•  Lack of side effects and explicit evaluation order simplifies

some things for a compiler (provided you don't blow it in other
ways).

•  Programs are often surprisingly short.
•  Language can be extremely small and yet powerful.

35

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 11: Logic Languages
•  Logic Programming Concepts
•  Prolog
•  Theoretical Foundations
•  Logic Programming in Perspective

36

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Logic Programming Concepts
•  Logic programming systems allow the programmer to state a

collection of axioms from which theorems can be proven.
•  Symbolic logic used for the basic needs of formal logic:

•  Express propositions: logical statements that may or may not be true.
•  Express relationships between propositions.
•  Describe how new propositions can be inferred from other

propositions.
•  Proposition consists of objects and relationships of objects to

each other.
•  Particular form of symbolic logic used for logic programming

is called first-order predicate logic.
•  The user of a logic program states a theorem or goal, and the

language implementation attempts to find a collection of
axioms and inference steps that together imply the goal.

37

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Logic Programming
•  Based on predicate calculus.
•  Predicates: building blocks P(a1,a2,...,aK), e.g.:
limit(f, infinity, 0)
enrolled(you, CS3304)
•  These are interesting because we attach meaning to them, but within

the logical system they are simply structural building blocks, with no
meaning beyond that provided by explicitly-stated interrelationships.

•  Operators: conjunction, disjunction, negation, implication.
•  Universal and existential quantifiers.
•  Statements:

•  Sometimes true, sometimes false, often unknown.
•  Axioms: assumed true.
•  Theorems: provably true.
•  Hypotheses (goals): things we'd like to prove true.

38

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Prolog
•  Prolog can be thought of declaratively or imperatively:

•  We’ll emphasize the declarative semantics for now, because that's
what makes logic programming interesting.

•  We'll get into the imperative semantics later.
•  Prolog allows you to state a bunch of axioms:

•  Then you pose a query (goal) and the system tries to find a series of
inference steps (and assignments of values to variables) that allow it
to prove your query starting from the axioms.

•  Example statement:
mother(mary, fred).
 % you can either think of this as an predicate asserting that
 % mary is the mother of fred – or a data structure (tree)
 % in which the functor (atom) mother is the root,
 % mary is the left child, and fred is the right child

rainy(rochester).

39

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Resolution and Unification
•  Horn clause format:
H ← B1, B2, …, Bn

•  Resolution - existing statement are combined, possibly
canceling terms, to derive new statements:
C ← A, B
D ← C
D ← A, B

•  Unification – matching terms:
flowery(X) ← rainy(X)
rainy(Rochester)
flowery(Rochester)
•  Free variable (X) acquires value (Rochester).

40

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Search/Execution Order
•  Bottom-up resolution, forward chaining:

•  Begin with facts and rules of database and attempt to find sequence
that leads to goal.

•  Works well with a large set of possibly correct answers.
•  Top-down resolution, backward chaining:

•  Begin with goal and attempt to find sequence that leads to set of facts
in database.

•  Works well with a small set of possibly correct answers.
•  Prolog implementations use backward chaining.
•  When goal has more than one subgoal, can use either

•  Depth-first search: find a complete proof for the first subgoal before
working on others

•  Breadth-first search: work on all subgoals in parallel
•  Prolog uses depth-first search: can be done with fewer computer

resources.
41

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Imperative Control Flow
•  Cut - a zero-argument predicate ! (exclamation point):

•  Always succeeds.
•  Side effect: commits the interpreter to whatever choices have been

made since unifying the parent goal with the left hand side of the
current rule.

•  Example - list membership:
•  No cut:
member(X, [X | _]).
member(X, [_ | T]) :- member(X, T).

•  Cut:
member(X, [X | _) :- !.
member(X, [_ | T]) :- member(X, T).

•  Alternative:
member(X, [X | _).
member(X, [H | T]) :- X \= H, member(X, T).
•  X \= H means X and H will not unify.

42

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Database Manipulation
•  Prolog is homoiconic: it can represent itself.
•  It can also modify itself.

•  Add clause with the built-in predicate assert.
•  Remove clause with the built-in predicates retract and
retractall.

•  clause predicate attempts to match its two arguments against the
head and body of some existing clause in the database.

•  Individual terms can be created, or their contents extracted,
using the built-in predicates functor, arg, and =.. .
•  functor(T, F, N) succeeds if and only if T is a term with functor
F and arity N.

•  arg(N, T, A) succeeds if and only if its first two arguments are
instantiated, N is a natural number, T is a term, and A is the Nth
argument of T.

•  Infix predicate =.. “equates” a term with a list.
43

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Theoretical Foundations
•  In mathematical logic, a predicate is a function that maps

constants (atoms) or variables to the values true and false.
•  Predicate calculus provides a notation and inference rules for

constructing and reasoning about propositions (statements)
composed of predicate applications, operators, and the
quantifiers ∀ and ∃.
•  Operators include and (∧), or (∨), not (¬), implication (→), and

equivalence (↔).
•  Quantifiers are used to introduce bound variables in an appended

proposition, much as λ introduces variables in the lambda calculus.
•  The universal quantifier, ∀, indicates that the proposition is true for all

values of the variable.
•  The existential quantifier, ∃, indicates that the proposition is true for at

least one value of the variable.
•  Clausal form provides a unique expression for every preposition.

44

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

“Closed World” Assumption
•  Closed world assumption: the database is assumed to

contain everything that is true.
•  When the database doe not have information to prove the

query, the query is assumed to be false.
•  Prolog can prove that a goal is true but it cannot prove that

the goal is false.
•  Assumption: if a goal cannot be proven true, it is false.
•  Prolog is a true/fail system, not true/false system.

•  The problem of the closed-world assumption is related to the
negation problem.

45

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Negation
•  A collection of Horn clauses does not include any things

assumed to be false: purely “positive” logic.
•  \+ predicate is different from logical negation – it can

succeed simply because our current knowledge is insufficient
to prove it.

•  Negation in Prolog occurs outside any implicit existential
quantifiers on the right-hand side of the rule:
•  \+(takes(X, his201)). where X is uninstantiated means:
¬∃X[takes(X, his201)] rather than ∃X[¬takes(X,
his201)]

•  A complete characterization of the values of X for which
¬takes(X, his201) is true would require a complete
exploration of the resolution tree something that Prolog does
only when all goals fails or when repeatedly prompted with
semicolons. 46

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Trace Example
likes(jake,chocolate).
likes(jake,apricots).
likes(darcie,licorice).
likes(darcie,apricots).

trace.
likes(jake,X), likes(darcie,X).

(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?
(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?
(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: Likes(darcie, apricots)

X = apricots

47

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 12: Concurrency
•  Background and Motivation
•  Concurrent Programming Fundamentals
•  Implementing Synchronization
•  Language-Level Mechanisms
•  Message Passing

48

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Definitions
•  Classic von Neumann (stored program) model of computing

has single thread of control.
•  Parallel programs have more than one thread of control.
•  Motivations for concurrency:

•  To capture the logical structure of a problem.
•  To exploit extra processors, for speed.
•  To cope with separate physical devices.

•  Concurrent: any system in which two or more tasks may be
underway (at an unpredictable point in their execution).

•  Concurrent and parallel: more than one task can by physically
active at once (more than one processor).

•  Concurrent, parallel and distributed: processors are
associated with the devices physically separated in the real
world.

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Process
•  A process or thread is a potentially-active execution context.
•  Processes/threads can come from:

•  Multiple CPUs.
•  Kernel-level multiplexing of single physical machine.
•  Language or library level multiplexing of kernel-level abstraction.

•  They can run:
•  In true parallel.
•  Unpredictably interleaved.
•  Run-until-block.

•  Most work focuses on the first two cases, which are equally
difficult to deal with.

•  A process could be thought of as an abstraction of a physical
processor.

50

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Race Conditions
•  A race condition occurs when actions in two processes are

not synchronized and program behavior depends on the order
in which the actions happen.

•  Race conditions are not all bad; sometimes any of the
possible program outcomes are ok (e.g. workers taking things
off a task queue).

•  Race conditions (we want to avoid race conditions):
•  Suppose processors A and B share memory, and both try to

increment variable X at more or less the same time
•  Very few processors support arithmetic operations on memory, so

each processor executes
LOAD X
INC
STORE X

•  If both processors execute these instructions simultaneously X could
go up by one or by two.

51

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Synchronization
•  Synchronization is the act of ensuring that events in different

processes happen in a desired order.
•  Synchronization can be used to eliminate race conditions
•  In our example we need to synchronize the increment

operations to enforce mutual exclusion on access to X.
•  Most synchronization can be regarded as one of the

following:
•  Mutual exclusion: making sure that only one process is executing a

critical section (e.g., touching a variable) at a time.
•  Usually using a mutual exclusion lock (acquire/release).

•  Condition synchronization: making sure that a given process does not
proceed until some condition holds (e.g., that a variable contains a
given value).

52

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Shared Memory
•  To implement synchronization you have to have something

that is atomic:
•  That means it happens all at once, as an indivisible action.
•  In most machines, reads and writes of individual memory locations

are atomic (note that this is not trivial; memory and/or busses must be
designed to arbitrate and serialize concurrent accesses).

•  In early machines, reads and writes of individual memory locations
were all that was atomic.

•  To simplify the implementation of mutual exclusion, hardware
designers began in the late 60's to build so-called read-
modify-write, or fetch-and-phi, instructions into their
machines.

53

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Concurrent Programming Fundamentals
•  Thread: an active entity that the programmer thinks of as

running concurrently with other threads.
•  Built on top of one or more processes provided by the

operating system:
•  Heavyweight process: has its own address space.
•  Lightweight processes: share an address space.

•  Task: a well defined unit of work that must be performed by
some thread:
•  A collection of threads share a common “bag of tasks”.

•  Terminology inconsistent across systems and authors.

54

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Communication and Synchronization
•  Communication - any mechanism that allows one thread to

obtain information produced by another:
•  Shared memory: program’s variables accessible to multiple threads.
•  Message passing: threads have no common state.

•  Synchronization – any mechanism that allows the
programmer to control the relative order in which operations
occur on different threads.
•  Shared memory: not implicit, requires special constructs.
•  Message passing: implicit.

•  Synchronization implementation:
•  Spinning (busy-waiting): a thread runs in a loop reevaluating some

condition (makes no sense on uniprocessor).
•  Blocking (scheduler-based): the waiting thread voluntarily

relinquishes its processor to some other thread (needed a data
structure associated with the synchronization action).

55

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Thread Creation Syntax
•  Six principal options:

•  Co-begin.
•  Parallel loops.
•  Launch-at-Elaboration.
•  Fork/Join.
•  Implicit Receipt.
•  Early Reply.

•  The first two options delimit thread with special control-flow
constructs.

•  SR language provides all six options.
•  Java, C# and most libraries: fork/join.
•  Ada: launch-at-elaboration and fork/join.
•  OpenMP: co-being and parallel loops.
•  RPC systems: implicit receipt.

56

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Implementation of Threads
•  The threads: usually implemented on top of one or more

processes provided by the operating system.
•  Every thread a separate process:

•  Processes are too expensive.
•  Requires a system call.
•  Provide features are seldom used (e.g., priorities).

•  All thread in a single process:
•  Precludes parallel execution on a multicore or multiprocessor

machine.
•  If the currently running thread makes a system call that blocks, then

none of the program’s other threads can run.

57

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Two-Level Thread Implementation
•  User level threads on top of kernel-level processes:

•  Similar code appears at both level of the system:
•  The language run-time system implements threads on top of one or more

processes.
•  The operating system implements processes on top of one or more

physical processors.
•  The typical implementation starts with coroutines.
•  Turning coroutines into threads:

•  Hide the argument to transfer by
implementing scheduler.

•  Implement a preemption
mechanisms.

•  Allow data structure sharing.

58

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Uniprocessor Scheduling
•  A thread is either blocked or runnable:

•  current_thread: thread running “on a process”.
•  ready_list: a queue for runnable thread.
•  Waiting queues: queus for threads blocked waiting for conditions.
•  Fairness: each thread gets a frequent “slice” of the processor.

•  Cooperative multithreading: any long-running thread must
yield the processor explicitly from time to time.

•  Schedulers: ability to "put a thread/process to sleep" and run
something else:
•  Start with coroutines.
•  Make uniprocessor

run-until-block threads.
•  Add preemption.
•  Add multiple processors.

59

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Multiprocessors Scheduling
•  True or quasi parallelism introduces race between calls in

separate OS processes.
•  Additional synchronization needed to make scheduler

operations in separate processes atomic:
procedure yield:
 disable_signals
 acquire(scheduler_lock) // spin lock
 enqueue(ready_list, current)
 reschedule
 release(scheduler_lock)
 re-enable_signals

disable_signals
acquire(scheduler_lock) // spin lock
if not <desired condition>
 sleep_on <condition queue>
release(scheduler_lock)
re-enable signals

60

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Implementing Synchronization
•  Typically, synchronization is used to:

•  Make some operation atomic.
•  Delay that operation until some necessary precondition holds.

•  Atomicity: usually achieved with mutual exclusion locks.
•  Mutual exclusion ensures that only one thread is executing some

critical section of code at given point in time:
•  Much early research was devoted to figuring out how to build it from

simple atomic reads and writes.
•  Dekker is generally credited with finding the first correct solution for

two threads in the early 1960s.
•  Dijkstra: a version that works for n threads in 1965.
•  Peterson: a much simpler two-thread solution in 1981.

•  Condition synchronization: allows a thread to wait for a
precondition: e.g. a predicate on the value(s) in one or more
shared variables.

61

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Semaphores
•  A semaphore is a special counter:

•  Has an initial value and two operations, P and V, for changing value.
•  A semaphore keeps track of the difference between the number of P

and V operations that have occurred.
•  A P operation is delayed (the process is de-scheduled) until #P-#V <=

C, the initial value of the semaphore.
•  The semaphores are generally fair, i.e., the processes

complete P operations in the same order they start them
•  Problems with semaphores:

•  They're pretty low-level:
•  When using them for mutual exclusion, it's easy to forget a P or a V,

especially when they don't occur in strictly matched pairs.
•  Their use is scattered all over the place:

•  If you want to change how processes synchronize access to a data
structure, you have to find all the places in the code where they touch
that structure, which is difficult and error-prone

62

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Monitors
•  Suggested by Dijkstra as a solution to the problems of

semaphores (languages Concurrent Pascal, Modula, Mesa).
•  Monitor is a module or object with operations, internal state,

and a number of condition variables:
•  Only one operation of a given monitor is allowed to be active at a

given point in time (programmers are relieved of the responsibility of
using P and V operations correctly).

•  A thread that calls a busy monitor is automatically delayed until the
monitor is free.

•  An operation can suspend itself by waiting on a condition variable
(not the same as semaphores – no memory).

•  All operations on the encapsulated data , including synchronization,
are collected together.

•  Monitors have the highest-level semantics, but a few sticky
semantic problem - they are also widely used.

63

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Conditional Critical Regions
•  Proposed as an alternative to semaphores by Brinch Hansen.
•  Critical region - a syntactically delimited critical section in

which the code is permitted to access a protected variable:
•  Specifies a Boolean condition that must be true before control enters:

region protected_variable, when Boolean_condition do
 …
end region

•  No thread can access the protected variable except within a region
statement.

•  Any thread that reaches a region statement waits until the condition is
true and no other is currently in a region for the same variable.

•  Nesting regions: a deadlock is possible.
•  Languages – Edison:

•  Influenced synchronization mechanism of Ada 95, Java, and C#.

64

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Message Passing
•  Most concurrent programming on large multicomputers and

net- works is currently based on messages.
•  To send/receive a message, one must generally specify

where to send it to, or where to receive it from:
communication partners need names for one another:
•  Addressing messages to processes: Hoare’s CSP (Communicating

Sequential Processes).
•  Addressing messages to ports: Ada.
•  Addressing messages to channels: Occam.

•  Ada’s comparatively high-level semantics for parameter
modes allows the same set of modes to be used for both
subroutines and entries (rendezvous).

•  Some concurrent languages provide parameter modes
specifically designed with remote invocation in mind.

65

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Transactional Memory
•  Locks (semaphors, monitors, CCRs) make it easy to write

data-race free programs but they do not scale:
•  Adding processors and threads: the lock becomes a bottleneck.
•  We can partition program data into equivalence classes: a critical

section must acquire lock for every accessed equivalence class.
•  Different critical sections may locks in different orders: deadlock can

result.
•  Enforcing a common order can be difficult.

•  Locks may be too low level a mechanism.
•  The mapping between locks and critical sections is an

implementation detail from a semantic point of view:
•  We really want is a composable atomic construct: transactional

memory (TM).

66

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Chapter 13: Scripting Languages
•  What is a Scripting Language?
•  Problem Domains
•  Scripting the World Wide Web
•  Innovative Features

67

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Scripting Language
•  Modern scripting languages have two principal sets of

ancestors:
•  Command interpreters or “shells” of traditional batch and

“terminal” (command-line) computing:
•  IBM’s JCL, MS-DOS command interpreter, Unix sh and csh.

•  Various tools for text processing and report generation
•  IBM’s RPG, and Unix’s sed and awk.

•  From these evolved:
•  Rexx: IBM’s “Restructured Extended Executor,” dates from 1979.
•  Perl: originally devised by Larry Wall in the late 1980s, and now the

most widely used general purpose scripting language.
•  Other general purpose scripting languages include Tcl (“tickle”),

Python, Ruby, VBScript (for Windows) and AppleScript (for the Mac).

68

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Common Characteristics
•  Both batch and interactive use.
•  Economy of expression: avoid the extensive declarations and

top-level structure.
•  Lack of declarations; simple scoping rules.
•  Flexible dynamic typing.
•  Easy access to system facilities (other programs).
•  Sophisticated pattern matching and string manipulation:

usually extended regular expressions.
•  High level data types: frequently built into the syntax and

semantics of the language itself.

69

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Shell (Command) Languages
•  They have features designed for interactive use.
•  Provide mechanisms to manipulate file names, arguments,

and commands, and to glue together other programs:
•  Most of these features are retained by more general scripting

languages.
•  We use bash Unix shell to illustrate these features.
•  There is also csh family of shells.

•  We consider a few of them - full details can be found in the
bash man page, or in various on-line tutorials:
•  Filename and Variable Expansion.
•  Tests, Queries, and Conditions.
•  Pipes and Redirection.
•  Quoting and Expansion.
•  Functions.
•  The #! Convention.

70

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Text Processing / Report Generation
•  Shell languages tend to be heavily string-oriented.

•  Commands are strings parsed into lists of words.
•  Variables are string-valued.
•  Not intended for editor-like text operations (e.g., emacs or vi).

•  Tools needed to provide for search, substitution, etc.:
•  The second principal class of ancestors for modern scripting

languages.
•  Some representative tools:

•  sed
•  awk
•  Perl

71

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Mathematics and Statistics
•  A one-line mathematics and statistics computation
•  APL - A Programming Language:

•  Interactive, matrix oriented.
•  Concise expression of mathematical algorithms.
•  Code structured as a sequence of unary/binary operators/functions

acting on matrices/arrays.
•  A large number of special characters for operators: x[⍋x←6?40]

•  Modern successors:
•  Mathematical computing: Maple, Mathematica, and Matlab.
•  Statistical computing: S and R.

72

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

“Glue” Languages / General Purpose Scripting
•  Scripting languages - shell- and text-processing mechanisms:

•  Can prepare input and parse output from processes.
•  An extensive library of built-in operations to access the

features of underlying OS.
•  Rich set of features for internal computation:

•  Arbitrary precision arithmetic (Python, Ruby).
•  Higher-level types.
•  Modules and dynamic loading (Perl, Tcl, Python, Ruby).

•  The philosophy of general-purpose scripting is to make it as
easy as possible to construct the overall framework of a
program:
•  External tools are used only for special-purpose tasks.
•  Compiled languages only when performance is at a premium.

73

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Extension Languages
•  Most applications accept some sort of commands:

•  These commands are entered textually or triggered by user interface
events such as mouse clicks, menu selections, and keystrokes.

•  Commands in a graphical drawing program might save or load a
drawing; select, insert, delete, or modify its parts; choose a line style,
weight, or color; zoom/rotate the display; or modify user preferences.

•  An extension language serves to increase the usefulness of
an application by allowing the user to create new commands,
generally using the existing commands as primitives.

•  Increasingly seen as an essential feature:
•  Adobe’s graphics suite (Illustrator, etc.) can be extended (scripted)

using JavaScript, Visual Basic (on Windows), or AppleScript.
•  AOLserver, an open-source web server from America On-Line, can

be scripted using Tcl. Disney and Industrial Light and Magic use
Python to extend their internal (proprietary) tools.

74

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

World Wide Web
•  Dynamically created World Wide Web content:

•  Does the script that creates the content run on the server or the client
machine?

•  Server-side and client-side web scripting.
•  Server side scripting: used when the service provided wants

to retain complete control over the content of the page but
does not create the content in advance (e.g., search engines,
Internet retailers).

•  Client-side scripts are typically used for tasks that don’t need
access to proprietary information, and are more efficient if
executed on the client’s machine (e.g., interactive animation,
error-checking, fill-in forms).

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

CGI Scripts
•  The original mechanism for server-side web scripting is the

Common Gateway Interface (CGI).
•  A CGI script is an executable program residing in a special

directory known to the web server program.
•  When a client requests the URI corresponding to such a

program, the server executes the program and sends its
output back to the client:
•  This output needs to be something that the browser will understand:

typically HTML.
•  CGI scripts may be written in any language available:

•  Perl is particularly popular:
•  Its string-handling and “glue” mechanisms are suited to generating

HTML.
•  It was already widely available during the early years of the web.

76

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Embedded Server-Side Scripts
•  Though widely used, CGI scripts have several disadvantages:

•  The web server must launch each script as a separate program, with
potentially significant overhead (though, CGI script compiled to native
code can be very fast once running).

•  Scripts must generally be installed in a trusted directory by trusted
system administrators (they cannot reside in arbitrary locations as
ordinary pages do).

•  The name of the script appears in the URI, typically prefixed with the
name of the trusted directory, so static and dynamic pages look
different to end users.

•  Each script must generate not only dynamic content, but also the
HTML tags that are needed to format and display it (his extra
“boilerplate” makes scripts more difficult to write).

•  Most web servers now use a “module loading” mechanism
that allows interpreters for one or more scripting languages.

77

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Client Side Scripts
•  Embedded server-side scripts are generally faster than CGI

script, at least when startup cost predominates:
•  Communication across the Internet is still too slow for interactive

pages.
•  Because they run on the web designer’s site, CGI scripts and,

to a lesser extent, embeddable server-side scripts can be
written in many different languages:
•  All the client ever sees is standard HTML.

•  Client-side scripts, by contrast, require an interpreter on the
client’s machine:
•  There is a powerful incentive for convergence in client-side scripting

languages: most designers want their pages to be viewable by as
wide an audience as possible.

78

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

JavaScript
•  While Visual Basic is widely used within specific organizations

- all the clients of interest are known to run Internet Explorer.
•  Pages intended for the general public almost always use

JavaScript for interactive features:
•  Developed by Netscape in the mid 1990s.
•  All major browser implement JavaScript.
•  Standardized by ECMA (the European standards body) in 1999.

•  The HTML Document Object Model (DOM) standardized by
the World Wide Web Consortium specifies a very large
number of elements, attributes, and user actions, all of which
are accessible in JavaScript:
•  Scripts can, at appropriate times, inspect or later almost any aspect of

the content, structure, or style of a page.

79

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Java Applets
•  An applet is a program designed to run inside some other

program.
•  The term is most often used for Java programs that display

their output in (a portion of) a web page:
•  Does not produce HTML output.
•  Directly controls a portion of the page.
•  Java GUI libraries (Swing or AWT) are used to display information.

•  To support he execution of applets, most modern browsers
contain a Java virtual machine.

•  Subject to certain restrictions (security).
•  Mostly do not interact with the browser or other programs so

they generally not considered a scripting mechanism.

80

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

XSLT
•  XML (extensible markup language) is a more recent and

general language in which to capture structured data:
•  More regular and consistent syntax and semantics (compared to

HTML).
•  Extensibility: users can define their own tags.
•  Clear distinction between the content of a document (the data

it captures) and the presentation of that data.
•  Presentation is deferred to a companion standard known as

XSL (extensible stylesheet language).
•  XSLT is a portion of XSL devoted to transforming XML:

•  Selecting, reorganizing, and modifying tags and the elements they
delimit.

•  Scripting the processing of data represented in XML.

81

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Features of Scripting Languages
1.  Both batch and interactive use.
2.  Economy of expression.
3.  Lack of declarations; simple scoping rules.
4.  Flexible dynamic typing.
5.  Easy access to other programs.
6.  Sophisticated pattern matching and string manipulation.
7.  High level data types.

82

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Object Orientation
•  Perl 5 has features that allow one to program in an object-

oriented style.
•  PHP and JavaScript have cleaner, more conventional-looking

object-oriented features:
•  Both allow the programmer to use a more traditional imperative style.

•  Python and Ruby are explicitly and uniformly object-oriented.
•  Perl uses a value model for variables; objects are always

accessed via pointers.
•  In PHP and JavaScript, a variable can hold either a value of a

primitive type or a reference to an object of composite type:
•  In contrast to Perl, however, these languages provide no way to

speak of the reference itself, only the object to which it refers.

83

 Department of Computer Science

CS 3304 Lecture 28a: Chapters 8-13 Review (28 April 2012)

Summary
•  This lectures provide overview of the Chapters 8-13.
•  The material covered presents most, but not all the topics

from Chapters 8-13 that will be covered in the final exam.
•  Chapters 8-13 related material will constitute 80% of the final

exam.

84

