
 Department of Computer Science

© 2012 Denis Gracanin

CS 3304
Comparative Languages

Lecture 1: Introduction
17 January 2012

CS 3304 Lecture 1: Introduction (17 January 2012)

 Department of Computer Science

Course Overview

2

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012) 3

Welcome
• What this course is about?
• What this course is not about?
• What will you learn?
• How will you learn?
– Read and understand material.
– Regularly check for announcements and assignments.
– Interact with instructors and students.
– Provide feedback.

• Course website: http://scholar.vt.edu/
• Forum website: http://www.piazza.com/

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Overview
• CRN: 12059
• Course description:

This course in programming language constructs emphasizes
the run-time behavior of programs. The languages are
studied from two points of view: (1) the fundamental elements
of languages and their inclusion in commercially available
systems; and, (2) the differences between implementations of
common elements in languages. A grade of C or better
required in CS prerequisite 3114. I,II.
• Prerequisites:
• CS 3114 (MIN grade of C)

4

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012) 5

Contacts
• Instructor:

Dr. Denis Gracanin, Associate Professor
E-mail: gracanin@vt.edu
Office: KnowledgeWorks II, Room 1135
Office Hours:
• Location: LumenHaus (behind Cowgill Hall) or McBryde 122

Time: Tuesday/Thursday 1pm-3pm
• Location: KnowledgeWorks II, Room 1135

Time: By appointment

• Graduate Teaching Assistant (GTA):
Shaimaa Lazem
E-mail: shlazem@vt.edu
Office Hours:
• Location: McBryde 106

Time: Friday 9am-noon

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012) 6

Textbook and Course Materials
• Michael L. Scott

Programming Language Pragmatics, Third Edition
Morgan Kaufmann, 2009
ISBN-13 978-0-12-374514-9
• Course materials will be posted on the course web site

accessible through the VT scholar gateway:
http://scholar.vt.edu/

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012) 7

Grading
• One midterm exams (closed book): 15%.
• Final exam (comprehensive, closed book): 25%.
• Homeworks: 20% total.
• Programming assignments: 40%.
• Late submission policy: the assignment is first graded as if

submitted on time. The points score is then multiplied by the
factor k based on the time t elapsed between the deadline
and your submission.
• t ≤ 24 hours: k = 0.9
• 24 < t ≤ 48 hours: k = 0.5
• t > 48 hours: k = 0

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

• Please review The Virginia Tech Undergraduate Honor
System, for more information see:
http://www.honorsystem.vt.edu/
• All assignments are individual, no collaboration allowed.
• However, you can discuss course topics and related issues

as long they do not relate to homework or project specifics.
When in doubt, consult us first.
• All code will be checked by a tool that detects similarities

and warns about possible plagiarism.

8

Honor System

CS 3304 Lecture 1: Introduction (17 January 2012)

 Department of Computer Science

Introduction

9

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Why So Many Programming Languages?
• Evolution: we've learned better ways of doing things over

time.
• Socio-economic factors: proprietary interests, commercial

advantage.
• Orientation toward special purposes.
• Orientation toward special hardware.
• Diverse ideas about what is pleasant to use.

10

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

What Makes a Language Successful?
• Easy to learn (BASIC, Pascal, LOGO, Scheme).
• Easy to express things, easy use once fluent, "powerful" (C,

Common Lisp, APL, Algol-68, Perl).
• Easy to implement (BASIC, Forth).
• Possible to compile to very good (fast/small) code (Fortran).
• Backing of a powerful sponsor (COBOL, PL/1, Ada, Visual

Basic).
• Wide dissemination at minimal cost (Pascal, Turing, Java).

11

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

What Is a Programming Language for?
• Way of thinking: way of expressing algorithms.
• Languages from the user's point of view.
• Abstraction of virtual machine: way of specifying what you

want.
• The hardware to do without getting down into the bits.
• Languages from the implementor's point of view.

12

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Why Study Programming Languages? I
• Help you choose a language:
• C vs. Modula-3 vs. C++ for systems programming.
• Fortran vs. APL vs. Ada for numerical computations.
• Ada vs. Modula-2 for embedded systems.
• Common Lisp vs. Scheme vs. ML for symbolic data manipulation.
• Java vs. C/CORBA for networked PC programs.

• Make it easier to learn new languages some languages are
similar; easy to walk down family tree:
• Concepts have even more similarity; if you think in terms of iteration,

recursion, abstraction (for example), you will find it easier to
assimilate the syntax and semantic details of a new language than if
you try to pick it up in a vacuum. Think of an analogy to human
languages: good grasp of grammar makes it easier to pick up new
languages (at least Indo-European).

13

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Why Study Programming Languages? II
• Help you make better use of whatever language you use:
• Understand obscure features:
• In C, help you understand unions, arrays & pointers, separate

compilation, varargs, catch and throw.
• In Common Lisp, help you understand first-class functions/closures,

streams, catch and throw, symbol internals.

• Understand implementation costs: choose between alternative ways
of doing things, based on knowledge of what will be done
underneath:
• Use simple arithmetic equal (use x*x instead of x**2).
• Use C pointers or Pascal "with" statement to factor address calculations.
• Avoid call by value with large data items in Pascal.
• Avoid the use of call by name in Algol 60.
• Choose between computation and table lookup (e.g. for cardinality

operator in C or C++).

14

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Why Study Programming Languages? III
• Help you make better use of whatever language you use:
• Figure out how to do things in languages that don't support them

explicitly:
• Lack of suitable control structures in Fortran.
• Use comments and programmer discipline for control structures.
• Lack of recursion in Fortran, CSP, etc.
• Write a recursive algorithm then use mechanical recursion elimination

(even for things that aren't quite tail recursive).

• Figure out how to do things in languages that don't support them
explicitly:
• Lack of named constants and enumerations in Fortran.
• Use variables that are initialized once, then never changed.
• Lack of modules in C and Pascal use comments and programmer

discipline.
• Lack of iterators in just about everything fake them with (member?)

functions.
15

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Language Groups
• Imperative:
• von Neumann (Fortran, Pascal, Basic, C).
• Object-oriented (Smalltalk, Eiffel, C++?).
• Scripting languages (Perl, Python, JavaScript, PHP).

• Declarative:
• Functional (Scheme, ML, pure Lisp, FP).
• Logic, constraint-based (Prolog, VisiCalc, RPG).

• Imperative languages, particularly the von Neumann
languages, predominate:
• They will occupy the bulk of our attention.

• We also plan to spend a lot of time on functional, logic
languages.

16

CS 3304 Lecture 1: Introduction (17 January 2012)

 Department of Computer Science

ANTLR

17

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

What is ANTLR?

18

• ANTLR (http://www.antlr.org/) is a parser generator
used to implement language interpreters, compilers, etc.
• Books by Terence Parr:
• “The Definitive ANTLR Reference: Building Domain-Specific Languages”
http://www.pragprog.com/titles/tpantlr/

• “Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages”
http://www.pragprog.com/titles/tpdsl/

• Most often used to build translators and interpreters for
domain-specific languages (DSLs).
• DSLs are usually very high-level languages used for specific

tasks and particularly effective in a specific domain.
• DSLs provide a more natural, high-fidelity, robust, and

maintainable means of encoding a problem compared to a
general-purpose language.

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Definitions
• Lexer: converts a stream of characters to a stream of tokens

(ANTLR token objects know their start/stop character stream
index, line number, index within the line, and more).
• Parser: processes a stream of tokens, possibly creating an

AST.
• Abstract Syntax Tree (AST): an intermediate tree

representation of the parsed input that is simpler to process
than the stream of tokens and can be efficiently processed
multiple times.
• Tree Parser: processes an AST.
• StringTemplate: a library that supports using templates with

placeholders for outputting text (ex. Java source code).

19

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Using ANTLR
• Write the grammar using one or more files. A common approach is

to use three grammar files, each focusing on a specific aspect of
the processing:
• The first is the lexer grammar: creates tokens from text input.
• The second is the parser grammar: creates an AST from tokens.
• The third is the tree parser grammar, which processes an AST.
• This results in three relatively simple grammar files as opposed to

one complex grammar file.
• Optionally write StringTemplate templates for producing output.
• Debug the grammar using ANTLRWorks.
• Generate classes from the grammar. These validate that text input

conforms to the grammar and execute target language “actions”
specified in the grammar.
• Write an application that uses the the generated classes.

20

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Overall Translation Data Flow
• A translator maps each input sentence to an output sentence.
• The overall translation problem consists of smaller problems mapped to

well-defined translation phases (lexing, parsing, and tree parsing).
• The communication between phases uses well-defined data types and

structures (characters, tokens, trees, and ancillary structures).
• Often the translation requires multiple passes so an intermediate form

is needed to pass the input between phases.
• Abstract Syntax Tree (AST) is a highly processed, condensed version

of the input.

21

LEXER PARSER

TREE
WALKER

ancillary data structures:
symbol table, flow graph, ...

characters tokens

AST

INPUT OUTPUT

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Example ANTRL File: Expr.g
grammar Expr;

prog: stat+ ;

stat: expr NEWLINE
 | ID '=' expr NEWLINE
 | NEWLINE
 ;

expr: multExpr (('+'|'-') multExpr)*
 ;

multExpr
 : atom ('*' atom)*
 ;

atom: INT
 | ID
 | '(' expr ')'
 ;

ID : ('a'..'z'|'A'..'Z')+ ;
INT : '0'..'9'+ ;
NEWLINE:'\r'? '\n' ;
WS : (' '|'\t')+ {skip();} ;

22

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

ANTLRWorks

23

 Department of Computer Science

CS 3304 Lecture 1: Introduction (17 January 2012)

Summary
• There are many programming languages.
• Two main groups of programming languages are imperative

and declarative.
• ANTLR is a free, open source parser generator tool.

24

