
CS 3304 Program 3 Spring 2002

Eiffel Project −Simple Recommender
For this assignment you will implement a "recommendation" scheme similar to ones used in e−
commerce systems. The input will be a number of ratings for a small group of people, which will
then be used to determine whether a movie (in our case) could be recommended to a person.
Unlike the project I tortured some of you with in data structures, we will use a very simple form
of recommendation.

Sample Input
The following is a sample input file showing the format of the data that your program should
read. The file will always be named "input.txt".

insert ABBY
rating Austin Powers dislike
rating Braveheart like
rating Castaway like
rating Don Juan DeMarco like
rating Emma like
rating Faceoff dislike
rating Goodfellas dislike
rating Heathers dislike
rating Jane Eyre like
end
insert DAPHNE
rating Austin Powers like
rating Braveheart dislike
rating Castaway dislike
rating Don Juan DeMarco dislike
rating Emma dislike
rating Jane Eyre dislike
end
insert CHARLES
rating Austin Powers like
rating Castaway like
rating Don Juan DeMarco like
rating Emma like
rating Faceoff dislike
rating Heathers like
rating Il Postino like
rating Jane Eyre like
end
insert BERNIE
rating Austin Powers like
rating Braveheart dislike
rating Castaway dislike
rating Emma dislike
rating Faceoff like
rating Goodfellas like
rating Il Postino dislike
rating Jane Eyre dislike
end

query ABBY CHARLES Brave
heart
query ABBY CHARLES Goodf
ellas
query CHARLES ABBY Il
Postino
query CHARLES ABBY Brave
heart
query DAPHNE ABBY Il
Postino
query BERNIE ABBY Il
Postino

The file will have two parts. The first part consists of user rating information, and the second
part consists of queries that request a predicted rating based on the information that was
previously given. The two parts of the file are separated by a blank line, which can be used to
determine when to stop reading the rating information.

Due date: 29 April, 11:59:59 p.m. Page 1 of 3

CS 3304 Program 3 Spring 2002

Each users rating information begins with a line
 insert <name>
where <name> is a string of non−whitespace characters. The actual ratings are given by one or
more lines of the form
 rating <movie> <preference>
where <movie> is a string of words possibly separated by spaces, and <preference> is either
the word like or dislike. The example shows the entries as sorted, but you should not assume
that the data in the input is sorted. A user’s ratings end with the line

end
All data fields are separated by tab characters.

The queries have the form

query <name> <name> <movie>

with tabs in between all data fields. This query translates to the question "does the first person
recommend the movie to the second person?" For instance, the first query in the example asks
"does Abby recommend Braveheart to Charles?"

Queries are to be answered by comparing the ratings of one person with those of another. We
will use the rule that someone can make a recommendation for another person if their ratings
agree for a simple majority of their commonly rated movies. For instance, Abby and Charles can
trade recommendations, because they agree on five of seven ratings. If one person can
recommend for another person, then we just give the preference of that first person. So, in
answer to the query "does Abby recommend Braveheart to Charles?" the answer should be "yes".
If we were to ask if Bernie recommends anything to Abby the answer should be "no".

Output

Your output must be printed to a file name "report.txt". The output should consist of two
lines identifying you as the programmer and the project, and the answers to the queries. The
output for the above input would be printed as follows.

Programmer: Ben Keller
CS 3304 Project 3 Spring 2002

Query: Does ABBY recommend Braveheart to CHARLES?
Yes
Query: Does ABBY recommend Goodfellas to CHARLES?
No
Query: Does CHARLES recommend Il Postino to ABBY?
Yes
Query: Does CHARLES recommend Braveheart to ABBY?
ABBY likes Braveheart
Query: Does DAPHNE recommend Il Postino to ABBY?
DAPHNE has not rated Il Postino
Query: Does BERNIE recommend Il Postino to ABBY?
BERNIE cannot recommend for ABBY

Take note of the answers to the last three queries which correspond to the cases where the person
for which the query is being made has already rated the movie, the person who is supposed to
make the recommendation cannot because they have not rated the movie, and the case where the
person who is to make the recommendation does not agree sufficiently with the other person.

Be extremely careful when printing your output to make sure that yours matches mine. In
particular, make sure that you use punctuation as shown, and that there are no extra white−space
characters before punctuation characters. Also be careful with capitalization, and you should not
change the case of any string read from input. Your output must have the exact same number of
lines, but the spacing on the lines does not have to be exact. You must have a blank line where I

Due date: 29 April, 11:59:59 p.m. Page 2 of 3

CS 3304 Program 3 Spring 2002

have a blank line, and similarly if I have something on a line (even if it ends up not being graded)
you must have something on that line.

These sample files will be posted on the web.

Design & Implementation
You are to write your solution in Eiffel (using no external routines). You must write and use
multiple classes for this project. There is no specific requirement as to what these classes must
be, but you should try to make them as natural to the problem as possible. Your choices should
be reasonable. A solution that I wrote to this project in Java included a class for each individual
rating (a movie−rating pair), a class for the set of ratings for a person, and a class for the database
of ratings plus the main program in another class.

You should attempt to use as many library classes as you can in your implementation. You can
find out about the class interfaces by following the Library Interfaces link at the SmallEiffel
website. There may be others, but DICTIONARY[Value,Key] and SET[E] look particularly
appropriate. You can also find more about the STRING and other standard classes there. There
are some discrepancies between the library interface and the actual files, so before getting caught
up in using a class you might want to check that it exists in your local installation. On the
installation on my Mandrake Linux machine these files are in /usr/lib/SmallEiffel/lib_std. The
machines in 124 should have the files in the same place. You may also find the examples in
/usr/lib/SmallEiffel/lib_show a useful reference (although there don’t appear to be any that do file
I/O). The ACE examples might be helpful in setting up the build for your system.

For input look at STD_FILE_READ (which is a class and not an interface as shown on the
website). Some useful capabilities for your purposes are defined in INPUT_STREAM from
which the STD_FILE_READ class inherits. For output STD_FILE_WRITE and
OUTPUT_STREAM.

Your classes should be encapsulated to hide any unnecessary implementation details. You may
use feature access control to publish different interfaces for your classes. Style should follow the
examples in the library with appropriate block comments in each file that indicate that you are
the author. There is an emacs mode available on the SmallEiffel website at the bottom of the
Repository page.

Submitting your Program and Evaluation
You will submit this assignment to the Curator System (read the Student Guide) as a zip file.
Your submission should only include your Eiffel and any files needed to build the program, and a
README explaining how to build the program. If your program doesn’t work or is incomplete,
include information in the README file to explain how far you were able to get. The GTA will
compile and run your program for correctness, and look at your solution for design and adherance
to the requirements.

Program Compilation
Your program must compile using SmallEiffel 0.75.

Due date: 29 April, 11:59:59 p.m. Page 3 of 3

