CS 3304 Project 2: Decision Tree Learning Spring 2002
Due: 12 April, 11:59:59 p.m.

In this assignment you will write a Prolog program to implement an inductive learning algorithm
for decision trees.

Inductive learning is a process of learning from classification examples. The input is a set of
examples, each of which consists of values for some set of attributes, and the output is a way of
classifying the examples by their attributes. For instance, we might have as input the following
table

Size Color Spots Sex Classification
small white none male Bichon Frise

big black none male German Shephard
small brown none female Chihuahua

big black  white female Great Dane

medium white black male Dalmation

The result would be a hypothesis that allows us to classify these examples by dog breed.

There are a number of representations that can be used for classification, and we will use a
very common one which is the decision tree. The internal nodes of a decision tree are labeled by
attributes, and the branches out of each node are labeled by a value of the attribute. A leaf is
labeled by a class, which could be null. A path in the decision tree from the root to a leaf provides
a classification based on the attribute values.

Attributes and Examples We will use the following notation to define the attributes to decribe
objects or concepts.

attribute(AttributeName, ValueList)
This will be given as atoms such as

attribute( size, [ small, medium, bigl).
attribute( color, [ while, yellow, brown, black]).
attribute( spots, [ black, brown, white, nonel).
attribute( sex, [ male, female ]).

attribute( eye, [ brown, blue, grey 1).

Examples are defined by giving a classification for a particular set of attribute values:
example( Class, [ Attributel = Vall, Attribute2 = Val2, ... 1)
These also will be given as atoms, and continuing the example above we have

example( bichon, [ size = small, color = white, spots = none, sex = male]).

example( germanshep, [ size = big, color = black, spots = none, sex = female]).
example( chihuahua, [ size = small, color = white, spots = none, sex = female]).
example( greatdane, [ size = big, color = black, spots = white, sex = female]).
example( dalmation, [ size = medium, color = white, spots = black, sex = male]).



Decision Trees You are to use the following notation for the decision trees:

e null — an empty tree, indicating no examples.

e leaf(Class) — a single leaf labeled with a class, indicating all examples on path are of the
same class.

o tree(Attribute, [ Vall:Subtreel, Val2:Subtree2,...]) — an internal node labeled
with Attribute, the list identifies the branches and their labels (e.g., Val1l). The examples
in this tree belong to several classes.

Algorithm It will be useful to you to think of the algorithm recursively and by cases:

1. If there are no examples then the tree is empty.
2. If all examples belong to the same class, then the tree is a leaf labeled by that class.
3. Otherwise:

(a) Select the attribute that is the most informative (see below) to label an internal node.
(b) For each value of the attribute:
i. Find all examples that have the attribute value
ii. Build a tree with this subset of examples
iii. Add tree to new internal node

Selecting Attributes The idea behind selecting attributes is to choose one which will divide the
examples well by classes. Most approaches are based on information theory. The classical measure
of information content is entropy, which is the amount of information needed to classify an object:

Zp ) log, p(c)

where ¢ ranges over all classes of objects, and p(c) is the probability that an object in the training
set S is in class ¢. Of course, we are interested in choosing attributes, so we want an information
measure relative to an attribute A. We can do this by measuring the information content of the
partitioning of S by the values v of A:

res Zp U) Zp(C|A = U) 10g2 p(C|A = U)

where p(c|A = v) is the conditional probability that an object is in class c if attribute A has value
v in the set S. The amount of information needed to classify the values of attribute A is given by

Zp = v) logy p(A = v)

where the v ranges over the values of A.
Now, the measure we will use is called the information gain ratio, which is defined as
I —1I¢5(A)

GainRatio(A) = T(A)

We want the attribute with the highest gain ratio.



Implementation You are to implement the decision tree learning algorithm in Prolog. The
following steps indicate what is required and guide you through the process.

1. Define a predicate attribute_impurity(Examples,Attribute, Impurity) such that Impurity
is the information gain ratio for Attribute with respect to Examples. You will need to com-
pute the probabilities used in the formulas above. Since you have to use these values multiple
times it may be useful to construct a mechanism by which you store the values in a list and
then can retrieve them as needed (or you may use the assert predicates described below).

2. Define a predicate choose attribute(Attributes, Examples, BestAttribute) such that
BestAttribute is the attribute with the highest information gain ratio. You may find it
useful to use the builtin setof predicate discussed below.

3. Define a predicate induce tree(Attributes,Examples,Tree) Such that Tree is a decision
tree constructed from Examples and Attributes using the algorithm described above. The
value bound to Tree must use the notation given above.

4. You can execute your program using queries to the following predicate

% induce_tree(Tree)

h

% true if Tree is the decision tree formed from the existing example

% and attribute atoms, and by using the information gain ratio for

% selecting attributes.

o

induce_tree(Tree) :-
findall( example(Class, 0Obj), example(Class, Obj), Examples),
findall( Att, attributes(Att, _), Attributes),
induce_tree(Attributes,Examples,Tree) .

The findall predicate is described below.

Remember that the only real organizational structure you have is the predicate. So, if you have
something that requires recursion within another computation (e.g., finding the subtrees of an
internal node), you need to define another predicate to handle it.

Also, remember that the predicates can be used to test whether something is true or to compute
something so that the predicate is true.

Builtin Predicates The following might be useful.

e setof (X,P,L) — L is the list of unique objects X that satify predicate P. For instance, we
might have a database of atoms like

companion(nate,ronaldanne) .
companion(sam,troika) .
companion(tess,troika).
companion(joel,suki).



The query
setof (Person, companion(Person,troika),L)

would return with L = [sam, tess]. The values in the list are ordered in increasing order
by a default ordering on the terms, and duplicates are removed. You can also construct pairs
in the set. For instance suppose we want to pair the person with their age, and had the
following atoms in addition to those above:

age(nate,1).
age(sam,1).
age(tess,2).
age(joel,42).

Then the query
setof (Person/Age, (companion(Person,troika) ,age(Person,Age)),L).

would return the binding L = [sam/1, tess/2]. The predicate in this case is a conjunction
and the parenthesis are necessary.

e findall(X,P,L) — L is the list of all objects X that satisfy L. This is similar to setof, but
returns everything that matches even if there are duplicates. It is used in the code given
above.

e member (X,L) — X occurs in the list L.
e delete(L,X,R) — R is the list that results by deleting all objects that match X from L.

e assert(C) — add clause C to the fact/rule database. This predicate is used to modify the
program during execution — usually to save computed information. You might find this
useful for saving probabilities, which could be saved as facts. If you want the fact or rule to
be at the beginning of the corresponding facts use asserta(C). The predicate assertz(C)
places the clause at the end of the set of clauses with the same name (in SWI-Prolog this is
also what assert(C) does).

e retract(C) — removes all clauses that match with C. Allows you to undo an assert, but
could do more than that if you aren’t careful.

You might also want to look at the SWI-prolog documentation for information on predicates. If
you do look in the documentation you might see the notation setof/3. This refers to the setof
predicate with three arguments. There could be other predicates with the same name and a
different number of arguments.

Implementation Constraints. You are to use the tree structure given above, and to implement
the predicates as specified in Prolog to run on SWI-Prolog. There is no input and output in this
program.



Commenting and Style. Your code should be neatly formatted with good indentation style.

You program should have a header block comment that minimally identifies you as the pro-
grammer, lists your pid, and lists the predicates that are implemented. Each predicate should have
a block comment like that for the single argument induce tree given above. Each separate clause
should have at least a single comment line to describe the condition it is testing. For instance, you
might have something like:

% knows (Knower, Knowee)
yA

% true if Knower knows Knowee

% Case: everyone knows sam.
knows(_,sam) .

% Case: everyone knows themself
knows (X,X) .

% General case: if someone knows someone, who someone else knows, then the
% know that someone else.
knows(X,Y) :- knows(X,Z), knows(Y,Z).

What to Submit. You are to submit a single (text) pl (Prolog) file to the curator containing
your function definitions. Do not include any attribute or example atoms in the file.

Evaluation. Your program will hopefully be evaluated for correctness using automatic grading
in the curator. The GTA will then look at your programs for programming style.



