
Programming Languages

Control Abstraction

Benjamin J. Keller

Department of Computer Science, Virginia Tech



Programming Languages — Control Abstraction 2

Overview

• Runtime Stack Review

• Calling sequence

• Parameter passing

• Generic subroutines

• Exceptions

• Coroutines



Programming Languages — Control Abstraction 3

Subroutines

• Control abstraction — defined to perform some operation

• Program calls subroutime, which performs operation and

returns to caller

• Distinguish between functions with return value, and

procedures without return value

• Represented during execution by unit instance, composed of

code segment and activation record

• Activation Record Structure:

– Return address

– Access info on parameters

– Space for local variables

• Units often need access to non-local variables.



Programming Languages — Control Abstraction 4

Stack-based Languages

• Examples: ALGOL 60/Pascal

• Conflict during procedure activation between static (scope) and

dynamic (execution) environments

• Stack reflects dynamic environment: activation record pushed

at procedure call, and popped after return

• Activation record structure:

1. Return address

2. Dynamic link

3. Static link

4. Parameters and local variables



Programming Languages — Control Abstraction 5

Stack-Based Languages (Example)

Program main;

type array_type = array [1..10] of real;

var a : integer;

b : array_type;

Procedure x (var c : integer; d : array_type);

var e : array_type;

procedure y (f : array_type);

var g : integer;

begin ... z(a+c); ... end; {y}

begin {x}

... := b[6]...

y(e);

end; {x}

Procedure z (h : integer);

var a : array_type;

begin ... x (h,a); ... end;

begin {main}

... x (a,b); ...

end. {main}



Programming Languages — Control Abstraction 6

Stack-Based Languages (Example)

• Static scope: x, z in main, y in x

• What is dynamic call sequence?

Main ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ . . .

• What does run-time stack look like after x calls y 2nd time?

• How do we get reference to

– b in x?

– a in y?

• Where are these variables stored?



Programming Languages — Control Abstraction 7

Stack-Based Languages (cont)

• Dynamic link — pointer to caller’s activation record

• Static link — pointer to beginning of activation record of

statically containing program unit



Programming Languages — Control Abstraction 8

Locating Variables in Stack-Based Languages

• Must keep track of the static nesting level of each variable and

procedure

• When access variable or procedure, subtract static nesting level

of definition from static nesting level of the access

• Tells how far down static chain to environment of definition

• Example:

Name Level Name Level Name Level Name Level

main 0 x 1 y 2 z 1

a 1 c 2 f 3 h 2

b 1 d 2 g 3 a 2

e 2



Programming Languages — Control Abstraction 9

Notes on Locating Variables

1. Length of static chain from any fixed procedure to main

program is always same length (independent of activation)

2. Any non-local variable will be found after some fixed number of

static links (independent of activation)

3. The number of links is a constant that can be computed at

compile time as the difference between nesting level of call and

callee

4. Thus represent identifier references in program as pair:

〈chain position, offset〉

5. Example: from within y represent d as 〈1, nx + 2〉 where nx is

size of activation record of x before parameters. Similarly, a is

represented as 〈2, nmain + 1〉



Programming Languages — Control Abstraction 10

Display

• If static chain requires k dereferences, then an object will

require O(k) memory accesses.

• Display allows constant time access

• Array where jth element is reference to most recently active

subroutine at lexical nesting level j

• If current routine at level i, then access entry j = i − k

• If display is in memory, only two memory accesses to reach

object

• Display not commonly used



Programming Languages — Control Abstraction 11

Calling Sequences

• Prologue (calling procedure):

1. Make parameters available to callee

2. Save state of caller (register, program counter)

3. Make sure callee knows how to find where to return to

4. Enter callee at 1st instruction

• Epilogue (returning from procedure):

1. Get return address and transfer execution to that point

2. Caller restores state

3. If function, make sure result value left in accessible location

(register, on top of stack, etc.)



Programming Languages — Control Abstraction 12

Saving Registers

• Much of work can be done either by caller or callee

• Having callee do most of work can be more efficient

• With registers generally only want to save those used by both

caller and callee, but too hard to know which those are

• Simple strategy: caller saves registers using, callee saves

registers will use

• MIPS strategy:

– Registers are caller-saves or callee-saves

– Use callee-saves for local variables

– Use caller-saves for transient values



Programming Languages — Control Abstraction 13

Managing Static Chain

• Caller usually does work

• Cases

– Callee is nested inside the caller — link is to caller

– Callee is k ≥ 0 scope levels out — dereference links

• Static links passed as implicit parameter

• Displays can be updated like static links

• Also, callee can save old entry at level j on stack, and put its

own frame pointer into display



Programming Languages — Control Abstraction 14

Inline Expansion

• Alternative to stack-based calling convention

• Call is replaced by code of subroutine

• Avoids storage allocations and allows optimizations not

possible without inlining

• Programmer makes suggestion, and compiler decides

• Compiler dependent criteria for whether expansion is done

• C++ inline keyword

• Ada uses pragma — comment with message to compiler



Programming Languages — Control Abstraction 15

Procedure Parameters

• Use of parameters supports abstraction — Creates more

flexible program phrases.

• Mechanisms for accessing non-local information:

– Common block, Global variables

– Parameters — data, subprograms, types



Programming Languages — Control Abstraction 16

Kinds of Parameters

• Call by Reference (FORTRAN, Pascal):

– Pass address of actual parameter

– Access via indirection

– What if parameter is expression or constant? CHGTO4(2).

• Call by Copy (Algol 60, Pascal, C, etc.):

– Actual parameter copies value to formal parameter (and/or

vice-versa)

– value (in), result (out), value-result (in-out)

– result and value-result parameters must be variables, value

can be any storable value

– Can be expensive for large parameters.



Programming Languages — Control Abstraction 17

Kinds of Parameters

• Call by Name (Algol-60)

– Actual parameter provides expression to formal parameter

— re-evaluated whenever accessed

Procedure swap(a, b : integer);

var temp : integer;

begin

temp := a;

a := b;

b := temp

end;

– Won’t always work

swap(i, a[i]) with i = 1, a[1] = 3, a[3] = 17.

– No way to define a correct swap in Algol-60!



Programming Languages — Control Abstraction 18

Call-by-Name (cont)

• Expressive power — Jensen’s device:

To compute: x =
∑

n

i=1
V i

real procedure SUM (k, lower, upper, ak);

value lower, upper;

integer k, lower, upper;

real ak;

begin

real s;

s := 0;

for k := lower step 1 until upper do

s := s + ak;

sum := s

end;

• What is result of sum(i, 1, m, A[i])?

• What about sum(i, 1, m, sum(j, 1, n, B[i,j]))?



Programming Languages — Control Abstraction 19

Call-by-Name (cont)

• If evaluating parameters has side-effects (e.g., read), then must

know how many times parameter is evaluated to predict what

will happen.

• Therefore try to avoid call-by-name with expressions with

side-effects.

• Lazy evaluation is efficient implementation of call-by-name

where only evaluate parameter once. Requires that there be no

side-effects, since otherwise get different results.

• Implement call-by-name using thunks — procedures which

evaluate expressions — difficult and slow. Must pass around

code for evaluating expression (including environment).

• Note different from call-by-text (which would allow capture of

free variables).



Programming Languages — Control Abstraction 20

Parameter Passing

• Can classify parameter passing as copying (value, result, or

value-result) or definitional

• Definitional parameters are constant, variable, procedural, or

functional

• Constant parameters are treated as values, not variables —

different from call-by-value. Default for Ada in parameters.

• Can think of call-by-name as definitional with expression

parameter.

• Note that difference in parameter passing depends on what is

bound (value or address) and when it is bound.

• Already seen how to pass functional (and procedural)

parameters in our interpreter using closures.



Programming Languages — Control Abstraction 21

Exceptions

• Need mechanism to handle exceptional conditions

• Example: Trying to pop element off of an empty stack

• Clearly corresponds to mistake of some sort, but stack module

doesn’t know how to respond

• Without exception handling:

– print error message and halt

– function/procedure returns boolean success flag —

programmer has to check

– Add procedure parameter which handles exceptions



Programming Languages — Control Abstraction 22

Exceptions

• Exception mechanism in programming languages allows raising

an exception which is sent back to caller for handling

• A robust program is able to recover from exceptional

conditions, rather than just halting (or crashing).

• Typical exceptions:

– Arithmetic or I/O faults (e.g., divide by 0, read int and get

char, array or subrange bounds, etc.)

– failure of precondition,

– unpredictable conditions (read past end of file, end of

printer page, etc.),

– tracing program flow during debugging.

• Raised exception must be handled or program will fail



Programming Languages — Control Abstraction 23

Ada Exception Handling

• Raise exception with raise exception name

• Attach exception handlers to subprogram body, package body,

or block

begin

C

exception

when excp_name1 => C’

when excp_name2 => C’’

when others => C’

end



Programming Languages — Control Abstraction 24

Locating Exception Handler

• When an exception is raised, must be handled or caught

• Typical approach to locating handler

– Look for handler in current block (or subprogram)

– If not there, force return from unit and raise same exception

to routine which called current one

– Continue up the dynamic links until find handler or get to

outer level and fail.

• Semantics of raising and handling exceptions is dynamic rather

than static

• Handler can attempt to handle exception, but give up and raise

another exception



Programming Languages — Control Abstraction 25

Resuming After Exceptions

• Once exception is handled what happens next?

• Ada: return from the procedure (or unit) containing the

handler — called termination model.

• PL/I: re-execute statement where failure occurred (makes sense

for read errors, for example) unless handler forces otherwise

(with goto) — called resumption model

• Eiffel (an OOL): uses variant of resumption model.

• ML: exceptions can pass parameter to exception handlers (like

values in datatype). Otherwise very similar to Ada.



Programming Languages — Control Abstraction 26

ML Exceptions

• Example program to check for balanced parenthesis in a string

datatype ’a stack = EmptyStack | Push of ’a * (’a stack);

exception empty;

fun pop EmptyStack = raise empty

| pop(Push(n,rest)) = rest;

fun top EmptyStack = raise empty

| top (Push(n,rest)) = n;

fun IsEmpty EmptyStack = true

| IsEmpty (Push(n,rest)) = false;

exception nomatch;

fun buildstack nil initstack = initstack

| buildstack ("("::rest) initstack = buildstack rest (Push("(",initstack))

| buildstack (")"::rest) (Push("(",bottom)) = bottom

| buildstack (")"::rest) initstack = raise nomatch

| buildstack (fst::rest) initstack = buildstack rest initstack;

fun balanced string = (buildstack (explode string) = EmptyStack)

handle nomatch => false;



Programming Languages — Control Abstraction 27

ML Exceptions (cont)

• Notice that need to put parentheses around the expression to

which the handler is associated – awkward

• Might argue that this is not unexpected situation. Just a way

fancy way of introducing goto’s.



Programming Languages — Control Abstraction 28

Implementing Exceptions

• Goal is to have no overhead during normal execution

• Solution: maintain table of protected block and handlers

– Entries: start address of block, address of handler

– Table is sorted by address, and use binary search when

exception occurs

– Include pointer to table in stack frame for separately

compiled code

• Solution: C setjmp and longjmp — save and restore program

state, must mark variables as volatile so that variables in

registers are saved to memory

• Solution: continuation passing — closure passed to

continuation passing mechanism allows execution to proceed in

any environment



Programming Languages — Control Abstraction 29

Coroutines

• An execution context that exists concurrently

• Coroutine is an abstraction that employs a closure (code

address, and referencing environment)

• transfer jumps into coroutine at current location

• Subsequent transfers jump to last location

• Complicates scoping

• Used to implement iterators and in discrete event simulation

• Analogous to threads



Programming Languages — Control Abstraction 30

Coroutine Example

us, cfs : coroutine

coroutine update_screen -- initialize

detach -- initiate concurrent execution

loop

...

transfer(cfs)

...

coroutine check_file_system

detach

for all files

...

transfer(us)

...

begin -- main

us := new update_screen

cfs := new check_file_system

resume(us)


