Programming Languages

Types

Benjamin J. Keller

Department of Computer Science, Virginia Tech

Programming Languages — Types 2

Types Overview

Type Systems
Built-in types
Ageregate types
User-defined types

Static and Dynamic typing

Programming Languages — Types 3

Type Systems

e Mechanism for defining types, and

e Set of rules for
— type equivalence — when types are the same
— type compatibility — when value of a type can be used

— type inference — what type an expression has

Programming Languages — Types 4

Type Checking

Test that program obeys type compatibility rules
Type Class — violation of type rules

Strongly typed language — prohibits application of an operator
to an operand of wrong type.

Statically typed language — strongly typed language for which
type checking can be done at compile time.

Programming Languages — Types)

Models of Types

e Denotational — a type is a set

e (Constructive — a type is one of primitive types, or composite

type constructed from other types

o Abstraction-based — a type is an interface consisting of
operations with well-defined and consistent semantics

Programming Languages — Types 6

Built-In Types

e Primitive types
1. Hide representation of data

. Allow type-checking at compile and/or run-time

2
3. Help disambiguate operators
4

. Allow expression of constraints on accuracy of
representation
— (COBOL, PL/I, Ada) LongInt, DoublePrecision, etc.

— Save space and check for legal values
o Aggregate types

e Come with built-in operations

Programming Languages — Types 7

Cartesian Products

Product of types
SxT=A{(s,ty|se S,teT}.

Can also write as IL;c;5; = 51 X Sy X ... x §,,.
If all types are the same, write as S™.

Ex. Tuples of ML: type point = int * int
How many elements in product?

SO called unit in ML.

Programming Languages — Types 8

Records

Records in COBOL, Pascal, Ada
Structures in PL/I, C, and Algol 68
Heterogeneous collections of data

Fields are labeled (different than product type)

record record
X : 1integer; a : 1lnteger;
y : real b : real;

end; end;

W

Operations and relations: selection “.”, assignment, equality

Can use generalized product notation: II, 1 ,1,617 (1)

Ex. Label = {x,y}, T(x) = integer, T'(y) = real.

Programming Languages — Types 9

Disjoint Union

e Variant record — 17 U 15 with discriminant

e Support alternatives within type:

RECORD
name : string;
CASE status : (student, faculty) OF
student: gpa : real;
class : INTEGER;
| faculty: rank : (Assis, Assoc, Prof);
END;
END;

e Goal: save space yet provide type security.

e Space reserved for a variable of this type is the larger of the

variants.

Programming Languages — Types 10

Type Security of Disjoint Unions

Type security fails in Pascal and MODULA-2 since variants
not protected

Allow changing discriminant without changing corresponding
data.

Examples of type safe disjoint unions in Ada, Clu, ML

In ML can create a disjoint union as (type safe)

datatype IntReal = INTEGER of int | REAL of real;

Programming Languages — Types 11

Ada Variants

e Declared as parameterized records:

type geometric (Kind: (Triangle, Square)
record
color : ColorType := Red ;
case Kind of
when Triangle =>
ptl,pt2,pt3:Point;
when Square =>
upperleft : Point;
length : INTEGER range 1..100;
end case;

end record;

Programming Languages — Types 12

Ada Variants (cont)

e Declarations
— obl: geometric — sets Kind as default Square

— ob2: geometric(Triangle) — sets Kind as Triangle

e Illegal to change discriminant alone.
— obl := ob2 — OK
— ob2 := obl — generate run-time check to ensure Triangle
e If want to change discriminant, must assign values to all
components of record:

obl := (Color=>Red,Kind=>Triangle,
ptil=>a,pt2=>b,pt3=>c);

Programming Languages — Types 13

Ada Variants (cont)

e If write code
obl.length...
then converted to run-time check:

if obl.Kind = Square then ... obl.length
else raise constraint_error

end if.

e Fixes type insecurity of Pascal

Programming Languages — Types 14

Disjoint Unions in C

e C supports undiscriminated unions:

typedef union {int i; float r;} utype.

e No static or run-time checking is performed to ensure proper

use

Programming Languages — Types 15

Disjoint Unions

e Note disjoint union is not same as set-theoretic union, since

have tags.

IntReal = {INTEGER} x int + {REAL} X real

Programming Languages — Types 16

Arrays

Homogeneous collection of data

Like function with finite domain (index type) to element type
Array [1..10] of Real

corresponds to map {1,...,10} — Real
Operations: indexed access, assignment, equality

Sometimes a slice operation: A[2..6] represents an array
composed of A[2] to A[6]

Programming Languages — Types 17

Array Bindings

e Attributes: index range (size) and location of array

e Static:
— Index range and location bound at compile time

— FORTRAN

e Semi-static:
— Index range of array bound at compile time
— Location is determined at run-time

— Pascal — array stored on stack

Programming Languages — Types

Array Bindings

e (Semi-)dynamic:
— Index range may vary at run-time

— Attributes of a local variable may be determined by

procedure parameter

— Size fixed once procedure invoked

— ALGOL 60, Ada
e Flexible:

— Size may change at any time during execution

— Can extend array size when needed

— Algol 68 and Clu

18

Programming Languages — Types 19

Collection of elements

set of elt_type;

Implemented as bitset or dynamic structure (list)

Operations: assignment, equality, subset, membership, etc.

Base type generally needs to be primitive (why?)

Programming Languages — Types 20

Recursive Types

e ML Examples

tree = Empty | Mktree of int * tree * tree
list = Nil | Cons of int * list

e Supported by some languages: Miranda, Haskell, ML

e But built by programmer in others with pointers

list = POINTER TO RECORD
first:integer;
rest: 1list
END;

Programming Languages — Types 21

Recursive Types (cont)

Think of type as set, and type definition as equation
Recursive types may have many solutions

Example: list = {Nil} U (int x list) has the solutions
1. Finite sequences of integers followed by Nil: (2, (5,Nil))

2. Finite or infinite sequences, where if finite then end with Nil

Theoretical result: Recursive equations always have a least

solution — although may give an infinite set if real recursion.

Programming Languages — Types 22

Recursive Types (cont)

e Can find via finite approximation.

listg {Nil}
list, (Nil} U (int x listo)
{Nil} U {(n,Nil)|n € int}
list, = {Nill U (int x list;)
{Nil} U{(n,Nil)|n € int} U {(m, (n,Nil))|m,n € int}

U list,,

Programming Languages — Types 23

Recursive Types (cont)

e Construction like unwinding definition of recursive function

factg fun n = if n = 0 then 1 else undef

facty = funn = if n =0 then 1 else n * facty(n — 1)
fun n = if n = 0,1 then 1 else undef

factso fun n = if n =0 then 1 else n * fact;(n — 1)
fun n = if n =0,1 then 1 else
if n = 2 then 2 else undef

fact U fact,,

e Some recursive type equations inconsistent with classical math,
but used in computer science

Programming Languages — Types 24

Sequences

e [Lists

— Supported in most functional and logical languages

— operations: head, tail, cons, length, etc.

e Sequential files

— Operations: open, close, reset, read, write, check for end.

— Persistent data — files.
e Strings
— Operations: comparison, length, substring

— Either primitive or composite
+ Composite (arrays) in Pascal, Modula-2, ...
x Primitive in ML

* Lists in Miranda and Prolog (no length bound)

Programming Languages — Types 25

User-Defined Types

e User gets to name new types.

e Rationale:
. more readable
. Easy to modify if definition localized

. Factorization — avoid work and mistakes of making copies

of type expressions

. Added consistency checking in many cases.

Programming Languages — Types 26

Static and Dynamic Typing

Most languages use static binding of types to variables, usually

in declaration

int x; //bound at translation time}

FORTRAN has implicit declaration using naming conventions

If start with “I” to “N”, then integer, otherwise real.
Other languages will infer type of undeclared variables.

Both run real danger of problems due to typing mistakes

Programming Languages — Types 27

Errors and Typing

e Example in ML, if
datatype Stack ::= Nil | Push of int;
then define
fun f Push 7 = ...

e What error occurs?

e Answer: Push is taken as a parameter name, not a constructor.

Therefore f is given type: A => int -> B rather than the
expected: Stack -> B

Programming Languages — Types 28

Dynamic Binding

Dynamic binding found in APL and LISP.

Type of variable may change during execution.

Example: One declaration of x, and at one point x = 0 and at
another x = [5,2,3]

Can’t allocate a fixed amount of space for variables.
Often implemented as pointer to location of value.

Determine which version of overloaded operator to use (+)

when executing.

Variable must have type tag

Programming Languages — Types 29

Type Equivalence

When are types identical?

Type T = Array [1..10] of Integer;
Var A, B : Array [1..10] of Integer;
C : Array [1..10] of Integer;

Which variables have the same type?

Name Equivalence
— Same type name: D and E
— Same type name or declared together: A and B, D and E

Structural Equivalence — Same structure means same type (all

same)

Programming Languages — Types 30

Structural Equivalence

Different approaches to equivalence

Do names matter? Does order matter?

Tl = record a : integer; b : real end;
T2 = record c : integer; d : real end;

T3 = record b : real; a : integer end;

Even worse:

T = record info : integer; next : "T end;
U = record info : integer; next : "V end;

V = record info : integer; next : U end;

Different languages make different choices

Programming Languages — Types 31

Problem

e Cannot distinguish

type student = record
name, address : string
age : integer
o and

type school = record
name, address : string
age : integer
e Structural equivalence allows

X : student;

y : school;

X 1= V;

Programming Languages — Types 32

Name Equivalence

Name equivalence says types with different names are different

Assumption: programmer named them that way so they would
be different

Most recent languages use name equivalence (Java for instance)

Difficulty caused by alias types

— May define data structure parameterized by type
type stack_element = integer;

— Want integer to be same as stack_element

— May want distinct types to prevent mixed computations

type celsius = real;

type fahrenheit = real;

Programming Languages — Types 33

Name Equivalence

Strict name equivalence — aliases are distinct types
Loose name equivalence — aliases are equivalent types

Difference
type A = B;
— is a definition under strict name equivalence

— 1is a declaration under loose name equivalence

Ada allows both

subtype stack_element is integer; --—- equivalent
type celsius is new integer; -—— distinct

type fahrenheit is new integer; —-—— distinct

Programming Languages — Types 34

Type Conversion

e Explicit conversion (cast) of value from one type to another

e (Cases:

1.

Types are structurally equivalent — no code generation

required

. T'ypes have nontrivial overlap of balues represented in the

same way — may require check that value is in target type

. Types have distinct representations — conversions use

special machine instructions (e.g., int to float)

Programming Languages — Types 35

Type Coercion

Implicit conversion that occurs when operand type must be
converted to match type expected by an operator

Common in some languages (C), not performed in others (ML)
C++ allows definition of coercion operators for classes

Weaken type security — allow conversions that may not be
desired by programmer

Programming Languages — Types 36

Type Inference

Determining type of expression from subexpressions

Mostly obvious

int x, y;

X =X + y;

However type may not be closed on operations

— Subranges — addition of values in range 10. .20

— Composites — concatenation of length 3 character arrays

Must perform runtime semantic checks

Programming Languages — Types 37

More Sophisticated Type Inference

e Some functional languages use sophisticated form of type

inference

e Type consistency — type checking algorithm can find a unique
type for every expression, with no contradictions and no

ambiguous occurrences of overloaded operators

Programming Languages — Types 38

ML Type Consistency Rules

All occurrences of an identifier must have same type

In expression if b then e else ey, b must have type boolean,

and e; and es; must have the same type

A function has a type of the form ’a -> ’b where ’a is the
type of the function’s parameter, and ’b is the type of the

result

In a function application, the argument type must be the same
as the parameter type, and the result type is the type of the

application

Programming Languages — Types 39

Type Unification

Used to resolve types when must be same by consistency rules
Similar to unification (matching) in Prolog
Example: have expression if b then e; else ey

If know that e; has type >a * int, and that ey has type
string * ’b then can unify by substituting string for ’a,
and int for ’b.

Programming Languages — Types 40

Type Completeness Principle

e No operation should be arbitrarily restricted in the types of the

values involved

e Avoid second-class types

Ex. (Pascal) Restrictions on return values of functions, lack of

procedure variables, etc.

e ML comes much closer to satistying than many other languages

Programming Languages — Types 41

Summary Ot Types

e Modern tendency is to strengthen static typing and avoid
implicit holes in types system

e Can only explicitly bypass type system

e Make as many errors occur at compile time as possible by:
— Requiring over-specification through typing

— Distinguishing between different uses of same types (name

equivalence)
— Mandating constructs designed to eliminate typing holes

— Minimizing or eliminating use of explicit pointers (especially

user-controlled deallocation of pointers)

Programming Languages — Types 42

Summary Of Types (cont)

e Trend results in loss of flexibility provided by dynamic typing
or lack of any typing

e (Goal of current research: recovering flexibility without losing

type safety

e Progress made over last 20 years includes polymorphism,
ADT’s, subtyping and aspects of object-oriented languages.

