
Programming Languages

Types

Benjamin J. Keller

Department of Computer Science, Virginia Tech

Programming Languages — Types 2

Types Overview

• Type Systems

• Built-in types

• Aggregate types

• User-defined types

• Static and Dynamic typing

Programming Languages — Types 3

Type Systems

• Mechanism for defining types, and

• Set of rules for

– type equivalence — when types are the same

– type compatibility — when value of a type can be used

– type inference — what type an expression has

Programming Languages — Types 4

Type Checking

• Test that program obeys type compatibility rules

• Type Class — violation of type rules

• Strongly typed language — prohibits application of an operator

to an operand of wrong type.

• Statically typed language — strongly typed language for which

type checking can be done at compile time.

Programming Languages — Types 5

Models of Types

• Denotational — a type is a set

• Constructive — a type is one of primitive types, or composite

type constructed from other types

• Abstraction-based — a type is an interface consisting of

operations with well-defined and consistent semantics

Programming Languages — Types 6

Built-In Types

• Primitive types

1. Hide representation of data

2. Allow type-checking at compile and/or run-time

3. Help disambiguate operators

4. Allow expression of constraints on accuracy of

representation

– (COBOL, PL/I, Ada) LongInt, DoublePrecision, etc.

– Save space and check for legal values

• Aggregate types

• Come with built-in operations

Programming Languages — Types 7

Cartesian Products

• Product of types

S × T = {〈s, t〉 |s ∈ S, t ∈ T} .

• Can also write as Πi∈ISi = S1 × S2 × . . . × Sn.

• If all types are the same, write as Sn.

• Ex. Tuples of ML: type point = int * int

• How many elements in product?

• S0 called unit in ML.

Programming Languages — Types 8

Records

• Records in COBOL, Pascal, Ada

• Structures in PL/I, C, and Algol 68

• Heterogeneous collections of data

• Fields are labeled (different than product type)

record record

x : integer; a : integer;

y : real b : real;

end; end;

• Operations and relations: selection “.”, assignment, equality

• Can use generalized product notation: Π
l∈LabelT (l)

• Ex. Label = {x, y}, T (x) = integer, T (y) = real.

Programming Languages — Types 9

Disjoint Union

• Variant record — T1 ∪ T2 with discriminant

• Support alternatives within type:

RECORD

name : string;

CASE status : (student, faculty) OF

student: gpa : real;

class : INTEGER;

| faculty: rank : (Assis, Assoc, Prof);

END;

END;

• Goal: save space yet provide type security.

• Space reserved for a variable of this type is the larger of the

variants.

Programming Languages — Types 10

Type Security of Disjoint Unions

• Type security fails in Pascal and MODULA-2 since variants

not protected

• Allow changing discriminant without changing corresponding

data.

• Examples of type safe disjoint unions in Ada, Clu, ML

• In ML can create a disjoint union as (type safe)

datatype IntReal = INTEGER of int | REAL of real;

Programming Languages — Types 11

Ada Variants

• Declared as parameterized records:

type geometric (Kind: (Triangle, Square) := Square) is

record

color : ColorType := Red ;

case Kind of

when Triangle =>

pt1,pt2,pt3:Point;

when Square =>

upperleft : Point;

length : INTEGER range 1..100;

end case;

end record;

Programming Languages — Types 12

Ada Variants (cont)

• Declarations

– ob1: geometric — sets Kind as default Square

– ob2: geometric(Triangle) — sets Kind as Triangle

• Illegal to change discriminant alone.

– ob1 := ob2 — OK

– ob2 := ob1 — generate run-time check to ensure Triangle

• If want to change discriminant, must assign values to all

components of record:

ob1 := (Color=>Red,Kind=>Triangle,

pt1=>a,pt2=>b,pt3=>c);

Programming Languages — Types 13

Ada Variants (cont)

• If write code

... ob1.length...

then converted to run-time check:

if ob1.Kind = Square then ... ob1.length

else raise constraint_error

end if.

• Fixes type insecurity of Pascal

Programming Languages — Types 14

Disjoint Unions in C

• C supports undiscriminated unions:

typedef union {int i; float r;} utype.

• No static or run-time checking is performed to ensure proper

use

Programming Languages — Types 15

Disjoint Unions

• Note disjoint union is not same as set-theoretic union, since

have tags.

IntReal = {INTEGER} × int + {REAL} × real

Programming Languages — Types 16

Arrays

• Homogeneous collection of data

• Like function with finite domain (index type) to element type

Array [1..10] of Real

corresponds to map {1, ..., 10} → Real

• Operations: indexed access, assignment, equality

• Sometimes a slice operation: A[2..6] represents an array

composed of A[2] to A[6]

Programming Languages — Types 17

Array Bindings

• Attributes: index range (size) and location of array

• Static:

– Index range and location bound at compile time

– FORTRAN

• Semi-static:

– Index range of array bound at compile time

– Location is determined at run-time

– Pascal — array stored on stack

Programming Languages — Types 18

Array Bindings

• (Semi-)dynamic:

– Index range may vary at run-time

– Attributes of a local variable may be determined by

procedure parameter

– Size fixed once procedure invoked

– ALGOL 60, Ada

• Flexible:

– Size may change at any time during execution

– Can extend array size when needed

– Algol 68 and Clu

Programming Languages — Types 19

Sets

• Collection of elements

set of elt_type;

• Implemented as bitset or dynamic structure (list)

• Operations: assignment, equality, subset, membership, etc.

• Base type generally needs to be primitive (why?)

Programming Languages — Types 20

Recursive Types

• ML Examples

tree = Empty | Mktree of int * tree * tree

list = Nil | Cons of int * list

• Supported by some languages: Miranda, Haskell, ML

• But built by programmer in others with pointers

list = POINTER TO RECORD

first:integer;

rest: list

END;

Programming Languages — Types 21

Recursive Types (cont)

• Think of type as set, and type definition as equation

• Recursive types may have many solutions

• Example: list = {Nil} ∪ (int × list) has the solutions

1. Finite sequences of integers followed by Nil: (2,(5,Nil))

2. Finite or infinite sequences, where if finite then end with Nil

• Theoretical result: Recursive equations always have a least

solution — although may give an infinite set if real recursion.

Programming Languages — Types 22

Recursive Types (cont)

• Can find via finite approximation.

list0 = {Nil}

list1 = {Nil} ∪ (int × list0)

= {Nil} ∪ {(n, Nil)|n ∈ int}

list2 = {Nil} ∪ (int × list1)

= {Nil} ∪ {(n, Nil)|n ∈ int} ∪ {(m, (n, Nil))|m, n ∈ int}

...

list =
⋃

n

listn

Programming Languages — Types 23

Recursive Types (cont)

• Construction like unwinding definition of recursive function

fact0 = fun n ⇒ if n = 0 then 1 else undef

fact1 = fun n ⇒ if n = 0 then 1 else n ∗ fact0(n − 1)

= fun n ⇒ if n = 0, 1 then 1 else undef

fact2 = fun n ⇒ if n = 0 then 1 else n ∗ fact1(n − 1)

= fun n ⇒ if n = 0, 1 then 1 else

if n = 2 then 2 else undef

· · ·

fact =
⋃

n

factn

• Some recursive type equations inconsistent with classical math,

but used in computer science

Programming Languages — Types 24

Sequences

• Lists

– Supported in most functional and logical languages

– operations: head, tail, cons, length, etc.

• Sequential files

– Operations: open, close, reset, read, write, check for end.

– Persistent data — files.

• Strings

– Operations: comparison, length, substring

– Either primitive or composite

∗ Composite (arrays) in Pascal, Modula-2, . . .

∗ Primitive in ML

∗ Lists in Miranda and Prolog (no length bound)

Programming Languages — Types 25

User-Defined Types

• User gets to name new types.

• Rationale:

1. more readable

2. Easy to modify if definition localized

3. Factorization — avoid work and mistakes of making copies

of type expressions

4. Added consistency checking in many cases.

Programming Languages — Types 26

Static and Dynamic Typing

• Most languages use static binding of types to variables, usually

in declaration

int x; //bound at translation time}

• FORTRAN has implicit declaration using naming conventions

If start with “I” to “N”, then integer, otherwise real.

• Other languages will infer type of undeclared variables.

• Both run real danger of problems due to typing mistakes

Programming Languages — Types 27

Errors and Typing

• Example in ML, if

datatype Stack ::= Nil | Push of int;

then define

fun f Push 7 = ...

• What error occurs?

• Answer: Push is taken as a parameter name, not a constructor.

Therefore f is given type: A -> int -> B rather than the

expected: Stack -> B

Programming Languages — Types 28

Dynamic Binding

• Dynamic binding found in APL and LISP.

• Type of variable may change during execution.

• Example: One declaration of x, and at one point x = 0 and at

another x = [5,2,3]

• Can’t allocate a fixed amount of space for variables.

• Often implemented as pointer to location of value.

• Determine which version of overloaded operator to use (+)

when executing.

• Variable must have type tag

Programming Languages — Types 29

Type Equivalence

• When are types identical?

Type T = Array [1..10] of Integer;

Var A, B : Array [1..10] of Integer;

C : Array [1..10] of Integer;

D : T;

E : T;

• Which variables have the same type?

• Name Equivalence

– Same type name: D and E

– Same type name or declared together: A and B, D and E

• Structural Equivalence — Same structure means same type (all

same)

Programming Languages — Types 30

Structural Equivalence

• Different approaches to equivalence

• Do names matter? Does order matter?

T1 = record a : integer; b : real end;

T2 = record c : integer; d : real end;

T3 = record b : real; a : integer end;

• Even worse:

T = record info : integer; next : ^T end;

U = record info : integer; next : ^V end;

V = record info : integer; next : ^U end;

• Different languages make different choices

Programming Languages — Types 31

Problem

• Cannot distinguish

type student = record

name, address : string

age : integer

• and

type school = record

name, address : string

age : integer

• Structural equivalence allows

x : student;

y : school;

...

x := y;

Programming Languages — Types 32

Name Equivalence

• Name equivalence says types with different names are different

• Assumption: programmer named them that way so they would

be different

• Most recent languages use name equivalence (Java for instance)

• Difficulty caused by alias types

– May define data structure parameterized by type

type stack_element = integer;

– Want integer to be same as stack element

– May want distinct types to prevent mixed computations

type celsius = real;

type fahrenheit = real;

Programming Languages — Types 33

Name Equivalence

• Strict name equivalence — aliases are distinct types

• Loose name equivalence — aliases are equivalent types

• Difference

type A = B;

– is a definition under strict name equivalence

– is a declaration under loose name equivalence

• Ada allows both

subtype stack_element is integer; --- equivalent

type celsius is new integer; --- distinct

type fahrenheit is new integer; --- distinct

Programming Languages — Types 34

Type Conversion

• Explicit conversion (cast) of value from one type to another

• Cases:

1. Types are structurally equivalent — no code generation

required

2. Types have nontrivial overlap of balues represented in the

same way — may require check that value is in target type

3. Types have distinct representations — conversions use

special machine instructions (e.g., int to float)

Programming Languages — Types 35

Type Coercion

• Implicit conversion that occurs when operand type must be

converted to match type expected by an operator

• Common in some languages (C), not performed in others (ML)

• C++ allows definition of coercion operators for classes

• Weaken type security — allow conversions that may not be

desired by programmer

Programming Languages — Types 36

Type Inference

• Determining type of expression from subexpressions

• Mostly obvious

int x, y;

x = x + y;

• However type may not be closed on operations

– Subranges — addition of values in range 10..20

– Composites — concatenation of length 3 character arrays

• Must perform runtime semantic checks

Programming Languages — Types 37

More Sophisticated Type Inference

• Some functional languages use sophisticated form of type

inference

• Type consistency — type checking algorithm can find a unique

type for every expression, with no contradictions and no

ambiguous occurrences of overloaded operators

Programming Languages — Types 38

ML Type Consistency Rules

• All occurrences of an identifier must have same type

• In expression if b then e1 else e2, b must have type boolean,

and e1 and e2 must have the same type

• A function has a type of the form ’a -> ’b where ’a is the

type of the function’s parameter, and ’b is the type of the

result

• In a function application, the argument type must be the same

as the parameter type, and the result type is the type of the

application

Programming Languages — Types 39

Type Unification

• Used to resolve types when must be same by consistency rules

• Similar to unification (matching) in Prolog

• Example: have expression if b then e1 else e2

• If know that e1 has type ’a * int, and that e2 has type

string * ’b then can unify by substituting string for ’a,

and int for ’b.

Programming Languages — Types 40

Type Completeness Principle

• No operation should be arbitrarily restricted in the types of the

values involved

• Avoid second-class types

Ex. (Pascal) Restrictions on return values of functions, lack of

procedure variables, etc.

• ML comes much closer to satisfying than many other languages

Programming Languages — Types 41

Summary Of Types

• Modern tendency is to strengthen static typing and avoid

implicit holes in types system

• Can only explicitly bypass type system

• Make as many errors occur at compile time as possible by:

– Requiring over-specification through typing

– Distinguishing between different uses of same types (name

equivalence)

– Mandating constructs designed to eliminate typing holes

– Minimizing or eliminating use of explicit pointers (especially

user-controlled deallocation of pointers)

Programming Languages — Types 42

Summary Of Types (cont)

• Trend results in loss of flexibility provided by dynamic typing

or lack of any typing

• Goal of current research: recovering flexibility without losing

type safety

• Progress made over last 20 years includes polymorphism,

ADT’s, subtyping and aspects of object-oriented languages.

