
Programming Languages

Lecture 8: Logic Programming Languages

Benjamin J. Keller

Department of Computer Science, Virginia Tech

Blacksburg, Virginia 24061 USA

Programming Languages — Lecture 16 — Logic Programming Languages 2

History and Goals of Logic Programming

• Competitor to LISP for AI programming in 80’s

• Adopted by Japanese for Fifth Generation Computing Project

(Prolog).

• What is logic programming?

– Programming based on the notion of logical deduction in

symbolic logic.

– Implementation typically based on mechanisms for

automatic theorem proving.

Programming Languages — Lecture 16 — Logic Programming Languages 3

History and Goals of Logic Programming (cont)

• “A constructive proof that for every list L there is a

corresponding sorted list S composed of the same elements as L

yields an algorithm for sorting a list.”

• Philosophy is shared by others not working on “logic

programming”

– Constable at Cornell, Martin-Löf in Sweden, Calculus of

Constructions group in France.

– These groups want to extract (more traditional) program

from constructive proofs.

• Very-High-Level Languages - non-procedural

• State what must be done, not how to do it. Idea is to separate

logic from control.

Programming Languages — Lecture 16 — Logic Programming Languages 4

Introduction to Prolog

• Prolog (PROgramming in LOGic), first and most important

logic programming language.

• Developed in 1972 by Alain Colmerauer in Marseilles.

• Relational rather than functional programming language

• Often best to start out as thinking of Prolog in terms of

language for working with a data base.

Programming Languages — Lecture 16 — Logic Programming Languages 5

Pure Prolog

• Three types of statements:

1. Facts (or hypotheses):

father(albert,jeffrey).

2. Rules (or conditions):

grandparent(X,Z) :- parent(X,Y),parent(Y,Z).

(read “:-” as “if”)

3. Queries (or goals):

?-grandparent(X,jeffrey).

• Should think of language as non-deterministic (or

non-procedural). Looks for all answers satisfying query.

Programming Languages — Lecture 16 — Logic Programming Languages 6

Example: Facts

father(ralph,john).

father(ralph,mary).

father(bill,ralph).

mother(sue,john).

mother(sue,mary).

mother(joan,ralph).

male(john).

male(ralph).

male(bill).

female(mary).

female(sue).

Programming Languages — Lecture 16 — Logic Programming Languages 7

Example: Rules

is_mother(M) :- mother(M,Y).

parent(M,X) :- mother(M,X).

parent(F,X) :- father(F,X).

parents(M,F,X) :- mother(M,X), father(F,X).

sister(X,S) :- female(S), parents(M,F,X), parents(M,F,S), S\=X.

ancester(X,Y) :- parent(X,Y).

ancester(X,Y) :- parent(X,Z),ancester(Z,Y).

Programming Languages — Lecture 16 — Logic Programming Languages 8

Selection Sort

sel_sort([],[]).

sel_sort(L,[Small|R]) :-

smallest(L,Small) ,

delete(Small,L,Rest) ,

sel_sort(Rest,R) .

/* smallest(List, Small) results in Small being the smallest element in List. */

smallest([Small],Small) .

smallest([H|T],Small) :-

smallest(T,Small) ,

Small=<H.

smallest([H|T],H).

/* delete(Elt,List,Result) has Result as List after deleting Elt. */

delete(Elt,[],[]) .

delete(Elt,[Elt|T],T) .

delete(Elt,[H|T],[H|NuTail]) :-

delete(Elt,T,NuTail) .

Programming Languages — Lecture 16 — Logic Programming Languages 9

Insertion Sort

ins_sort([],[]) .

ins_sort([H|T],Sorted) :-

ins_sort(T,Rest),

insert(H,Rest,Sorted) .

/* insert(Elt,List,Result) - if List is sorted, Result is obtained by putting

Elt where it fits in order in List. */

insert(Elt,[],[Elt]) .

insert(Elt,[H|T],[Elt,H|T]) :-

(Elt=<H) .

insert(Elt,[H|T],[H|Sorted]) :-

insert(Elt,T,Sorted) .

Programming Languages — Lecture 16 — Logic Programming Languages 10

QuickSort
/* sep(List,Key,Less,More) separates the List into the set of elements less

than or equal to Key (in Less) and those greater than or equal to Key

(in More) */

sep([],Key,[],[]) .

sep([H|T],Key,Less,[H|More]) :-

(H>Key) ,

sep(T,Key,Less,More) .

sep([H|T],Key,[H|Less],More) :-

(H=<Key) ,

sep(T,Key,Less,More) .

quick_sort([],[]) .

quick_sort([H|T],Sorted) :-

sep(T,H,Less,More) ,

quick_sort(Less,L_sorted) ,

quick_sort(More,M_sorted) ,

concat(L_sorted,[H|M_sorted],Sorted) .

/* concat(First, Second, List) results in List = concatenation of First

and Second. */

concat([],L,L) .

concat([H|T],L,[H|C]) :- concat(T,L,C) .

Programming Languages — Lecture 16 — Logic Programming Languages 11

Permutations

Can take advantage of reversibility since computing with relations
rather than functions.

append([],L,L) .

append([H|T],L,[H|R]) :- append(T,L,R) .

permute([],[]) .

permute(L,[H|T]) :-

append(V,[H|U],L) ,

/* V,U stand for the part of L before and after H */

append(V,U,W) ,

permute(W,T) .

Programming Languages — Lecture 16 — Logic Programming Languages 12

Logical vs Procedural Reading of Programs

• Can read Prolog program as specifying solution or

computation.

• How does a prolog program compute an answer?

father(ralph,john). father(ralph,mary). father(bill,ralph).

mother(sue,john). mother(sue,mary). mother(joan,ralph).

parent(M,X) :- mother(M,X).

parent(F,X) :- father(F,X).

ancester(X,Y) :- parent(X,Y).

ancester(X,Y) :- parent(X,Z),ancester(Z,Y).

?-ancester(joan,X).

• Backtracking

– First succeeds with X = ralph

– Second X= john

– Third X = mary

Programming Languages — Lecture 16 — Logic Programming Languages 13

Operators in Prolog

• Usually used as prefix, can force to be in infix or postfix and

give precedence as well.

• Example: arithmetic operators: 2+3*5 abbreviates

+(2,*(3,5))

• Operations are not evaluated

• Better to think of operations as forming tags on values

– Forming records

– Don’t really compute anything

– Typically uninterpreted

• Relations =, \=, <, >, =<, >= (note order of composite relations)

are evaluated.

digit(N):- N>=0,N<10.

Programming Languages — Lecture 16 — Logic Programming Languages 14

Example of Using Operations

• Trees

– Tree is either nil or is of form maketree(tree1,X,tree2).

– Programs to manipulate trees use pattern matching like in

ML

• Arithmetic

– If actually wish to calculate, must use is.

– Ex. area(L,W,A) :- A is L*W.

– Can only compute A from L,W — not reversible.

Programming Languages — Lecture 16 — Logic Programming Languages 15

Graphs

• Look at program to find paths in graph!

edge(a,b).

edge(a,f).

edge(b,c).

edge(c,a).

edge(d,e).

edge(e,a).

edge(e,c).

dumb_path(Start,Finish) :- edge(Start,Finish).

dumb_path(Start,Finish) :- edge(Start,Next),dumb_path(Next,Finish).

• What happens if type:

?- dumb_path(a,c).

?- dumb_path(a,e).

• Problem is continues to go through same vertex multiple times.

Programming Languages — Lecture 16 — Logic Programming Languages 16

Graphs (cont)

• Smarter program keeps track of vertices which are visited.

path(Start,Finish) :- smart_path(Start,Finish,[]).

smart_path(Current,Target,Visited) :- edge(Current,Target).

smart_path(Current,Target,Visited) :-

edge(Current,Next),non_member(Next,Visited),

smart_path(Next,Target,[Next|Visited]).

non_member(Elt,[]).

non_member(Elt,[Hd | Tl]) :- Elt \== Hd, non_member(Elt,Tl).

Programming Languages — Lecture 16 — Logic Programming Languages 17

Adjacency Lists

• Note that database representation of graph is not only

possibility.

• Can use adjacency list representation.

• Write graph as list of vertices and corresponding edges:

– Each vertex included with list of all edges going from it.

– E.g. node a represented by

v(a,[b,f])

– Whole graph given by

[v(a,[b,f]), v(b,[c]), v(c,[a]), v(d,[e]),v(e,[a,c])].

Programming Languages — Lecture 16 — Logic Programming Languages 18

Adjacency Lists (cont)

• Advantage - can add vertices and edges during a computation.

• Write:

– vertex(Graph,Vertex) which tells if Vertex is in Graph:

vertex([v(Vert,Edge) | Rest],Vert).

vertex([_ | Rest],Vert) :- vertex(Rest,Vert).

– edge(Graph,X,Y) true if there is an edge from X to Y.

edge(Graph,X,Y) :- member(v(X,Edges),Graph),

member(Y,Edges).

edge(Graph,X,Y) :- member(v(Y,Edges),Graph),

member(X,Edges).

• Rest of program for paths is as before.

Programming Languages — Lecture 16 — Logic Programming Languages 19

Russian Farmer Puzzle

• Variation of missionary and cannibals

Farmer taking goat and (giant) cabbage to market. Wolf

following farmer. Come to river with no bridge, but only

tiny boat big enough to hold farmer and one object.

How can farmer get all three across river without goat

eating cabbage or wolf eating goat?

• Specify solution

– At any time during solution, describe current state by

noting which side of river each of farmer, goat, cabbage and

wolf are on (call them north/south).

– Can write down all states and all allowable transitions and

then find path. (Like finding path in graph!)

Programming Languages — Lecture 16 — Logic Programming Languages 20

Representation

• Really only 4 possible actions: Farmer crosses with one of goat,

cabbage, and wolf, or farmer crosses alone.

• Write rules for each.

• Describe states by terms — state(F,G,C,W) where each of F,

G, C, W is one of north, south.

• Need predicate “opposite”

opposite(north,south).

opposite(south,north).

Programming Languages — Lecture 16 — Logic Programming Languages 21

Axiomatizing Actions

• Action 1: Farmer crosses with goat — need farmer and goat to

start on same side, no danger of wolf eating cabbage.

transition(state(F0,F0,C,W),state(F1,F1,C,W)) :-

opposite(F0,F1).

• Action 2: Farmer crosses with cabbage — need farmer and

cabbage to start on same side, wolf and goat must be on

opposite sides of river so goat is safe.

transition(state(F0,G,F0,W),state(F1,G,F1,W)) :-

opposite(F0,F1), opposite(G,W).

Programming Languages — Lecture 16 — Logic Programming Languages 22

Axiomatizing Actions

• Action 3: Farmer crosses with wolf — need farmer and wolf to

start on same side, goat must be on opposite side from cabbage.

transition(state(F0,G,C,F0),state(F1,G,C,F1)) :-

opposite(F0,F1), opposite(G,C).

• Action 4: Farmer crosses alone — need cabbage and wolf on

same side, goat on opposite side.

transition(state(F0,G,C,C),state(F1,G,C,C)) :-

opposite(F0,F1),opposite(G,C).

• Finding solution to problem is like finding path in graph.

Programming Languages — Lecture 16 — Logic Programming Languages 23

Cut

• Cut — curtails backtracking.

pred(. . .):-cond1, . . . , condk, !, condk+1, . . . , condn.

• Cut ! is always satisfied — freezes all previous choices

• If get to point where no more solutions to condk+1,. . ., condn

then all of pred(. . .) fails and no other clause or rule for pred

will hold.

• Backtracks until ! satisfied and then never backtracks over it.

Programming Languages — Lecture 16 — Logic Programming Languages 24

Uses of Cut

1. Only want one rule to be applicable, so keep from trying

another.

2. Cut indicates have reached a point where cannot succeed.

3. Only want one solution — avoid generating others.

Programming Languages — Lecture 16 — Logic Programming Languages 25

Cut Examples

• sum to(N,X) should give 1 + 2 + ... + N .

sum_to(1,1).

sum_to(N,Sum) :- Pred is N-1, sum_to(Pred,Partial_sum),

Sum is Partial_sum + N.

• First answer for sum to(1,X) is sum

• Second attempt goes into infinite loop.

• Most likely happens as part of resatisfying something complex.

e.g. sum to(1,X),foo(apples)

• Fix by putting in sum to(1,1) :- !.

Programming Languages — Lecture 16 — Logic Programming Languages 26

Fail

• If can exclude some cases early on. Can use cut to terminate

search.

Possible_Pres(willy) :- !,fail.

Possible_Pres(X) :- NativeBorn(X).

• Fail is predicate that is never satisfied.

Programming Languages — Lecture 16 — Logic Programming Languages 27

Problems with Cut

• Sometimes get strange behavior if not careful.

• Suppose have following program:

likes(joe,pizza) :- !.

likes(jane,Anything).

• What happens if put in query: ?- like(Person,pizza).

• Get answer of joe, but not jane. Yet likes(jane,pizza) is

true!

Programming Languages — Lecture 16 — Logic Programming Languages 28

Cut and Reversibility

• Using cut may hinder reversibility.

• Example:

append([],X,X) :- !.

append([A|B],C,[A|D]) :- append(B,C,D).

• Now only get one answer (when running either direction).

Programming Languages — Lecture 16 — Logic Programming Languages 29

Formal Basis for Prolog

• Prolog based on resolution theorem proving!

• Understand program as either proof or set of procedure calls.

– The fact A(a,b,c) is just treated as an atomic statement

which is asserted to be true.

– The rule A(X,Y) :- B(X,Y),C(X,Y). is understood as

logical statement ∀X, Y.(B(X, Y) ∧ C(X, Y) → A(X, Y))

Programming Languages — Lecture 16 — Logic Programming Languages 30

Horn Clauses

• Formulas of the form

∀X1, . . . , Xm.(B1(X1, . . . , Xm) ∧ . . . ∧ Bn(X1, . . . , Xm) →

A(X1, . . . , Xm)) are said to be Horn clause formulas (notice

fact is degenerate case where n = 0).

• Program is understood as a collection of Horn clause formulas.

• Query ?- D(X,Y) is understood as ∃X, Y.D(X, Y).

Programming Languages — Lecture 16 — Logic Programming Languages 31

Resolution Theorem Proving

• Is there a proof of ∃X, Y.D(X, Y) from statements in program?

• Resolution theorem proving works by attempting to show that

hypotheses and negation of conclusion (i.e. ∀X, Y. ∼ D(X, Y))

generate a contradiction.

• Contradiction is essentially found by finding values for X, Y

such that D(X, Y).

Programming Languages — Lecture 16 — Logic Programming Languages 32

Prolog and Horn Clauses

• Prolog is a restriction of Horn clause logic.

• Clause contains at most one positive atomic formula.

• Prolog does not implement resolution correctly.

• Omits the “occurs check” during unification.

• Occurs check prevents matching a variable with a term that

contains the same variable

• For example unifying a(Z,Z) with a(X,successor(X))

• Avoids infinite solutions to equations

X = successor(successor(successor(successor(successor(...

• Can lead to incorrect conclusions.

Programming Languages — Lecture 16 — Logic Programming Languages 33

Negation in Prolog

• Negation based on assumption of complete knowledge: if

system cannot prove statement is true, then it must be false.

• Three possible outcomes of proof: Succeeds, fails, doesn’t

terminate.

• Returns false only if it fails (finite failure).

• If attempt never terminates then don’t report it false!.

• Note that this is a non-monotonic rule of reasoning.

• In family program from above, since there is no fact

corresponding to father(shezad,kim), system deduces that it

is false.

Programming Languages — Lecture 16 — Logic Programming Languages 34

Negation

• Built-in predicate not defined so that not(X) succeeds if an

attempt to satisfy X fails.

• not(X) fails if an attempt to satisfy X succeeds.

not(X) :- X,!,fail.

not(X).

Thus

?- not(father(shezad,kim)).

reports true.

• However if add fact, father(shezad,kim), then will reverse

answers.

Programming Languages — Lecture 16 — Logic Programming Languages 35

Not Strangeness

• Suppose define the following rule

childless(X) :- not(father(Y,X)),not(mother(Z,X)).

– If fred not mentioned childless(fred) will return yes

– But childless(Z) returns no.

• Define the following rule but no rules for young

old(X) :- not(young(X)).

• If write the other direction,

young(X) :- not(old(X)).

get the opposite response, everything is young!

Programming Languages — Lecture 16 — Logic Programming Languages 36

Not Cautions

• not does not always behave properly — in particular,

not(not(term)) does not usually return same answers as term.

• Safest if only use not on predicates which have no free variables

(i.e., make sure variables instantiated before calling it!).

Programming Languages — Lecture 16 — Logic Programming Languages 37

Evaluation of Logic Programming and Prolog

• Keep in mind difference between Prolog and pure (Horn clause)

logic programming

• Prolog has many faults

• Idea of logic programming may still be quite promising if can

overcome deficiencies of Prolog. (For example, see uses of

Datalog in knowledge-based database.)

• If when programming, can ignore issues of control and just

worry about logic, then when works can worry about control to

optimize without destroying correctness.

• Very high level — self documenting.

• Efficiency is problem with Prolog. (Can optimize with

tail-recursion as in ML!)

Programming Languages — Lecture 16 — Logic Programming Languages 38

Evaluation of Logic Programming and Prolog

• Effectiveness limited to two classes of programs:

1. Where efficiency not a consideration.

2. Where too complex for conventional language.

• Retains useful role as well for prototyping or as specification

language.

Programming Languages — Lecture 16 — Logic Programming Languages 39

Evaluation of Logic Programming and Prolog

• One of reasons Japanese chose Prolog is belief that it can be

speeded up by use of highly parallel machines. OR-parallelism

seems useful (work on different branches of search tree in

parallel), but AND-parallelism (trying to satisfy various terms

of right side of rule in parallel) seems more problematic.

– One of few examples of non-procedural languages. (well,

sort of)

– Generalize by replacing unification by, e.g., solving systems

of inequalities. Constraint logic programming.

