
Programming Languages

Lecture 7: Semantic Analysis

Benjamin J. Keller

Department of Computer Science, Virginia Tech

Programming Languages — Lecture 7 — Semantic Analysis 2

Outline

• Semantics versus Syntax

• Role of Semantic Analyzer

• Attribute Grammars

• Attribute Flow

• Action Routines

• Tree Grammars

Programming Languages — Lecture 7 — Semantic Analysis 3

Syntax versus Semantics

• Syntax — determines valid form of program

• Semantics — behavior of valid program

• Convention is that syntax is what can be specified by CFG

• Doesn’t match intuition — some things that seem to be syntax

aren’t definable in CFG

Ex. number of arguments in function call

• In practice, anything that requires compiler to compare

constructs separated with other code, or to count items or

nested structures are semantics.

Programming Languages — Lecture 7 — Semantic Analysis 4

Semantics

• Static semantics — can be analyzed at compile-time

• Dynamic semantics — analyzed at runtime

– Division by zero

– Array bounds checks

• Not a clear distinction or boundary

• Theory says that while some problems can be found at

compile-time, not all can.

• So, must have runtime semantic checks

Programming Languages — Lecture 7 — Semantic Analysis 5

Semantic Analyzer

• Semantic analyzer

– Determines meaning of program

– Enforces semantic rules

• Role in compiler varies

– Strict boundary between parsing, analysis and synthesis

– Generally some interleaving of three activities

– Some compilers perform semantic analysis on intermediate

forms

Programming Languages — Lecture 7 — Semantic Analysis 6

Attribute Grammars

• “Decorated” context free grammar

• Associate attributes with nonterminals of grammar

• Associate rule with each production

E1 → E2 + T

. E1.val := sum(E2.val, T.val)

• Must uniquely identify nonterminal occurrences

Programming Languages — Lecture 7 — Semantic Analysis 7

Attribute Grammar Rules

• Rule can invoke semantic functions

E1 → E2 + T

. E1.val := sum(E2.val, T.val)

• Rule can copy values

E → T

. E.val := T.val

Programming Languages — Lecture 7 — Semantic Analysis 8

Kinds of Attributes

• Synthesized attribute — value only computed when symbol is

on left-hand side of production

– Attributes can be computed independently of context

– S-attributed grammar has only synthesized attributes

• Inherited attribute — value computed in productions where

symbol is on right-hand side

– Attributes computed using context

– Cannot avoid these in semantic analysis

Programming Languages — Lecture 7 — Semantic Analysis 9

Example: Binary Numbers with Fractions

Nonterminals Synthesized Attribute(s)

num val

string val, len

bit val

Programming Languages — Lecture 7 — Semantic Analysis 10

Grammar for Binary Numbers

(1) num → string1 . string2

. num.val := string1.val + string2.val/2string2.len

(2) num → string

. num.val := string.val

(3) string0 → string1 bit

. string0.val := 2 · string1.val + bit.val

. string0.len := string1.len + 1

(4) string → bit

. string.val := bit.val

. string.len := 1

(5) bit → 0

. bit.val := 0

(6) bit → 1

. bit.val := 1

Programming Languages — Lecture 7 — Semantic Analysis 11

Parse Tree for 1101.01

string

num

.

string bit

string bit

string

bit

1

bit

1

0

1

string

string

bit

bit

0

1

num.val = 13.25

Programming Languages — Lecture 7 — Semantic Analysis 12

Example: Using Inherited Attributes

Nonterminals Synthesized Attribute(s) Inherited Attributes

num val

string val, len pos

bit val pos

Programming Languages — Lecture 7 — Semantic Analysis 13

Grammar

(1) num → string1 . string2

. num.val := string1.val + string2.val

. string1.pos := 0

. string2.pos := −1

(2) num → string

. num.val := string.val

. string.pos := 0

Programming Languages — Lecture 7 — Semantic Analysis 14

Grammar (cont)

(3) string0 → string1 bit

. string0.val := string1.val + bit.val

. string0.len := string1.len + 1

. if string0.pos ≥ 0 then

string1.pos := string0.pos + 1

bit.pos := string0.pos

else

string1.pos := string0.pos − 1

bit.pos := −string0.len

Programming Languages — Lecture 7 — Semantic Analysis 15

Grammar (cont)

(4) string → bit

. string.val := bit.val

. string.len := 1

. if string.pos ≥ 0 then

bit.pos := string.pos

else

bit.pos := −1

(5) bit → 0

. bit.val := 0

(6) bit → 1

. bit.val := 2bit.pos

Programming Languages — Lecture 7 — Semantic Analysis 16

Parse Tree for 110.101

string

bit

string

bit

num

string

bit

string

bit

1

1

0

string

bit

string

bit

1

0

1

.

num.val = 6.625

Programming Languages — Lecture 7 — Semantic Analysis 17

Attribute Flow

• Pattern of information flow between attributes

• Necessary flow determined by language and parsing technique

• Example: arithmetic expressions

– Can define S-attributed grammar from SLR grammar

– LL(1) equivalent must have inherited attributes

Programming Languages — Lecture 7 — Semantic Analysis 18

L-Attributed Grammars

• Attribute A.s depends on attribute B.t if B.t is passed to a

semantic function that returns a value for A.s

• A grammar is L-attributed if

1. each synthesized attribute of a left-hand side symbol

depends only on inherited attributes of that symbol, or on

attributes of the symbols on the right-hand side of the

production; and

2. each inherited attribute of a right-hand side symbol depends

only on inherited attributes of the left-hand side symbol or

on attributes of symbols to its left in the right-hand side.

Programming Languages — Lecture 7 — Semantic Analysis 19

Parsing and Attribute Flow

• S-attributed grammars are those that can be evaluated

on-the-fly with an LR parse

• L-attributed grammars are those that can be evaluated

on-the-fly with an LL parse

• Evaluating on-the-fly refers to interleaving parsing and

attribute evaluation

• One-pass compiler fully interleaves parsing and code generation

Programming Languages — Lecture 7 — Semantic Analysis 20

Action Routines

• Semantic function that compiler executes during parsing

• Used in parser generators

• In LL parse may occur anywhere in production

– Only use production if know it is correct

– Example: ANTLR

• In LR parse must occur at end of production

– Rationale: don’t know if production applies until see full rhs

– Example: YACC and variants

Programming Languages — Lecture 7 — Semantic Analysis 21

ANTLR Grammar

arg_lst[SymbolTable& st] > [list<Decl> l] :

nme:IDENTIFIER ":" typ:IDENTIFIER

<< if ($st.isDefinedType($typ->getText()))

$l.push_back(Decl($nme->getText(),$typ->getText()));

>>

(","

nme2:IDENTIFIER ":" typ2:IDENTIFIER

<< if ($st.isDefinedType($typ2->getText()))

$l.push_back(Decl($nme2->getText(),$typ2->getText()));

>>

)*

;

Programming Languages — Lecture 7 — Semantic Analysis 22

YACC Grammar

%token NAME NUMBER

%%

statement: NAME ’=’ expression

| expression { printf("= %d\n", $1); }

;

expression: expression ’+’ NUMBER { $$ = $1 + $3; }

| expression ’-’ NUMBER { $$ = $1 - $3; }

| NUMBER { $$ = $1; }

;

Programming Languages — Lecture 7 — Semantic Analysis 23

Analysis of Abstract Syntax Trees

• Common for parser to generate AST for analysis

• Describe structure of AST as tree grammar

• Form attribute grammar from tree grammar instead of CFG

• Allows analysis of AST

