
Programming Languages

Lecture 6: Bindings

Benjamin J. Keller

Department of Computer Science, Virginia Tech

Programming Languages — Lecture 6 — Bindings 2

Lecture Outline

• Variables

• Scope

• Lifetime

• Value

• Names vs. Locations

Programming Languages — Lecture 6 — Bindings 3

Binding Time

• Attributes of parts of programs must be “bound” to object

before or during computation.

• A binding fixes a value or other property of an object (from a

set of possible values)

• Time at which choice for binding occurs is called binding time.

– Dynamic binding — at execution

– Static binding — at translation, language implementation,

or language definition

Programming Languages — Lecture 6 — Bindings 4

Dynamic Binding

• At entry to block or subprogram

– Bind actual to formal parameter

– Determine location of local variable

• At arbitrary times in program — bind values to variables via

assignment

Programming Languages — Lecture 6 — Bindings 5

Static Binding

• At translation

– Determined by programmer — bind type to variable name,

values to constants

– Determined by translator — bind global variable to location

(at load time), bind source program to object program

representation

• At implementation

– Bind values to representation in computer

– Bind operations and statements to semantics (if not uniform

may lead to different results with different implmentations)

Programming Languages — Lecture 6 — Bindings 6

Static Binding (cont)

• At language definition

– Structure of language

– Built-in and definable types

– Notation for values

Programming Languages — Lecture 6 — Bindings 7

Binding Time Examples

1. When is meaning of “+” bound to its meaning in “x + 10”?

• Could be at language definition, implementation, or at

translation

• May also be execution time — could depend on type of x

determined at run-time

2. Difference between reserved and keywords has to do with

binding time

• Both bound at language definition, but reserved word

binding can’t be changed

• Ex. “DO” is reserved word in Pascal, but not FORTRAN

(can write DO = 10)

• Ex. ”Integer” may be redefined in Pascal, but not

FORTRAN or Ada.

Programming Languages — Lecture 6 — Bindings 8

Late vs. Early Binding Time

• Many language design decisions relate to binding time

– Late — more flexible

– Early — more efficient

• Ex. More efficient to bind “+” at translation than execution

• Early — supports compilation, late — supports interpretation

• Programming choices may delay binding time

• Ex. recursion forces delay in binding time of local variables to

locations (FORTRAN allows choice: static allocation vs

stack-based allocation)

• Generally considered useful to bind ASAP

Programming Languages — Lecture 6 — Bindings 9

Managing Bindings

• Bindings stored both at compile and at run-time.

• Compilation

– Declarations stored in Symbol table (Names → Attributes)

– Most bindings used only in the compilation process

• Execution

– Run-time environment keeps track of meanings of names

(Names → Locations)

– Contents of locations stored in memory (also called the

state) (Locations → Values)

• An interpreter keeps all 3 kinds of bindings together in one

environment

Programming Languages — Lecture 6 — Bindings 10

Variables

• Variable has 6 components

1. Name

2. Type

3. Location or reference (l-value)

4. Value (r-value)

5. Scope - where variable accessible and manipulable - static

vs dynamic

6. Lifetime - interval of time in which location bound to

variable

• Scope and Lifetime same in some languages — different in

others (FORTRAN)

Programming Languages — Lecture 6 — Bindings 11

Variables (cont)

name type value

location

Programming Languages — Lecture 6 — Bindings 12

Using Variables

• What does “N := N + 1” mean?

• First N refers to location (l-value)

• Second N to value (r-value).

Programming Languages — Lecture 6 — Bindings 13

Dereferencing

• Dereferencing — obtaining value of variable

• Explicit in some languages. In ML write N := !N + 1

• Explicit pointer dereferencing (Pascal: p^, C: *p)

• Array access (A[i]) is a reference valued expression — most

expressions only give r-values

Programming Languages — Lecture 6 — Bindings 14

Changing Variable Attributes

• Common to think of changing value of variable at runtime

• Other attributes may change

• Ex. Name can change (via call-by-reference parameter)

• Called aliasing

Programming Languages — Lecture 6 — Bindings 15

Aliasing

type

type

x

y

• Call-by-reference parameters

• Assignment of variables (e.g., x := y)

– Copying: target variable retains its location, but copies new

value from source variable.

– Sharing: target variable gets location of source variable, so

both share the same location (like objects in Java).

Programming Languages — Lecture 6 — Bindings 16

Denotable Values

• Can classify languages by sorts of entities that can be bound to

an identifier

• Ex. Pascal

– Primitive values and strings (in constant definitions)

– References to variables and associated types (in variable

declarations)

– Procedure and function abstractions (in procedure and

function definitions)

– Types (in type definitions)

Programming Languages — Lecture 6 — Bindings 17

Scope

• Scope of a variable is the range of program instructions where

variable is known.

• Can be static or dynamic

Programming Languages — Lecture 6 — Bindings 18

Static Scoping

• Used by most languages (e.g., Pascal, Modula-2, C, . . .)

• Scope is associated with the static text of the program

• Can determine scope by looking at structure of program

• May have holes in scope of variable

program ...

var M : integer;

....

procedure A ...

var M : array [1..10] of real; (* hides M in program *)

begin

...

end;

begin

...

end.

Programming Languages — Lecture 6 — Bindings 19

Static Scoping (cont)

• Symbol table keeps track of which declarations are currently

visible.

• Symbol table like stack — search from top, so when enter a

new scope, push new declarations. When exit scope, pop

declarations.

Programming Languages — Lecture 6 — Bindings 20

Dynamic Scoping

• Scope determined by the execution path

• An occurrence of an identifier in a procedure may refer to

different variables in different procedure invocations

• With dynamic scoping, symbol table built and maintained at

run-time

• Push and pop entries when enter and exit scopes at run-time

• Dynamic scoping usually associated with dynamic typing

• LISP and APL use dynamic scoping (though Scheme has

default of static)

Programming Languages — Lecture 6 — Bindings 21

Dynamic Scoping (cont)

program ...

var A : integer;

procedure Y(...);

begin ...; B := A + B; ...

end; {Y}

procedure Z(...);

var A: integer;

begin ...; Y(...); ...

end; {Z}

begin {main} ...; Z(...);...

end.

Question: Which variable with name A is used when Y is called

from Z?

• Static: globally defined A.

• Dynamic: local A in Z (declaration in Z is most recent)

Programming Languages — Lecture 6 — Bindings 22

Lifetime

• Static allocation (FORTRAN)

– All variables are allocated storage before execution of

program begins.

– When return to a procedure local variables still have value

left at end of previous invocation.

• Dynamic allocation (Pascal, C. . .)

– When enter procedure any local variables are allocated and

are then deallocated when exit.

– Uses activation records

Programming Languages — Lecture 6 — Bindings 23

Activation Records

• In block-structured language (Pascal, C, Modula-2, . . .)

• Activation record has space for local variables and parameters

of procedure, function, block, etc.

• Allocate space for activation record on run-time stack at

invocation

• Pop record when exit unit

• Note that a procedure may have several activation records on

stack if called recursively.

• May have several distinct variables on stack with same name

Programming Languages — Lecture 6 — Bindings 24

Heap Memory

• Dynamic allocation (pointers) uses “heap” memory

• Lifetime determined by use of new and dispose functions

• Pascal has three kinds of memory:

– static (occupied by global variables),

– stack-based or automatic (occupied by parameters and local

variables of procedures and functions),

– heap-based or manually allocated.

• ML: automatically allocate from heap when needed and

deallocated when no way of accessing it (by garbage collector).

• Java similar.

Programming Languages — Lecture 6 — Bindings 25

Value Bindings

• Value not necessarily bound at execution time

• Language defined constant — bound at language definition

time (e.g., maxint, true, false)

• Program constant — bound at compilation

const size = 100;

doubleSize = 2 * size; (* manifest constant *)

• Some languages allow binding at procedure entry

procedure ... (n : integer) is

var x: constant integer := 3 * n - 2; (* binding *)

A: array[1..n] of real;

Programming Languages — Lecture 6 — Bindings 26

Value Bindings (cont)

• Initialization of variables at declaration.

var x : integer := 5;

• Initialization can be done first or every time procedure is

entered

– FORTRAN only first time

– Java every time

Programming Languages — Lecture 6 — Bindings 27

Names vs Locations

• Two expressions are said to be aliases if they denote the same

location

• If have p(&x,&y), then the call p(z,z) makes x and y aliases

in p

• Aliasing often producing undesirable behavior in functions

• Ex. If the body of p(x,y) first increases x by one and then y

by one, z increases by 2

• Aliasing with pointers:

int *x, *y; ... x := y;

Then *x and *y are aliases — changing one changes the other

• In languages with assignment by sharing (e.g., Java), get

aliasing automatically with all assignments.

Programming Languages — Lecture 6 — Bindings 28

Pointers

• Recognized as major cause of run-time errors.

• Problems:

1. If type not specified (PL/I), then can break type system.

2. Dangling pointers

(a) If pointers can point to object on run-time stack (named

variable — PL/I, C), then object may go away before

pointer.

(b) User may explicitly deallocate pointer even if other

variables still point to same object. Possible solutions

involve reference counting or garbage collection.

Programming Languages — Lecture 6 — Bindings 29

Pointers

• Problems (cont)

1. Dereferencing uninitialized or nil pointers may cause

crashes.

2. Garbage: Unreachable items may clog heap memory and

can’t recycle. Garbage collection or reference counting may

solve.

3. Holes in typing system may allow arbitrary integers to be

used as pointers (through variant records in Pascal)

• Pointer arithmetic possible in C

– Note that p + 1 for pointer is not same as p + 1 for integer

– For pointer, address incremented by size of object pointed

to (e.g., array indexing)

