
Programming Languages

Lecture 3: Functional Languages

Benjamin J. Keller

Department of Computer Science

Virginia Tech

keller@cs.vt.edu

Lecture Outline

• Motivation for FP

• Commands vs. Expressions

• History of Functional Languages

• ML

2

Motivation

• John Backus, 1978 Turing Award Lecture

• Imperative programming languages too re-

strictive

• Abstractions of von Neumann architecture

• Antiquated way of thinking (from ’50’s)

3

Von Neumann Bottleneck

• Computer has

– CPU with accumulator and registers

– Memory

– Bus between memory and CPU (von Neu-

mann bottleneck)

• Execution of machine statement

– fetch — move instruction from memory

to CPU

– decode — break into parts

– execute — interpret

4

Example

• Execute instruction ADD 162

1. Fetch instruction from memory

2. Decode into operation (ADD) and address

(162)

3. Fetch contents from address 162

4. Add contents to accumulator

• Simple statements require many transfers

through bus

5

Imperative Languages

• Program can be viewed as control state-

ments guiding execution of assignment state-

ments.

• Assignments are accesses and stores to mem-

ory

• Variable refers to memory location where

contents can change

• Value of x+1 not same throughout program

6

Imperative Languages

• Order of execution important (hard to per-

form in parallel)

• Changing values makes reasoning about vari-

ables difficult

• Hard to reason about programs

7

Mathematical Perspective

• Use of variables in mathematics

• Variables are static

• referential transparency — can replace an

expression anywhere that it occurs by its

value without changing result of program

• Key idea: compute result once and then

reuse

• Good for parallelism

• Imperative languages not referentially trans-

parent (x+1)

8

Advantages of Functional

Programming

• Referentially transparent — easier to rea-

son about, easer to parallelize

• Order of execution need not be specified

— evaluate expressions when necessary

• Higher-level — shorter, more understand-

able programs

• Flexibility in combining old programs to

form new ones

• “Lazy” evaluation allows computing with

infinite data objects

9

Other Reasons for FP

• Useful in AI programming

• Useful in developing executable specifica-

tions and rapid prototyping

• Closely related to topics in theoretical CS

(recursive functions, denotational seman-

tics).

10

Commands/Imperative

Languages

• Support for variables — represent memory

locations for storing updatable values

• Assignment operation — computation de-

pends on changes to values stored in vari-

ables

• Repetition — flow of control guided by

loops and conditional statements

11

Imperative Languages

• Based on commands (statements)

• Meaning of command is operation which

modifies the current contents of memory,

based on current contents of memory and

explicitly provided data

• Results of one command communicated to

next command through changes to mem-

ory

• Highly dependent upon computer architec-

ture

12

Expressions

• Return a value, depending on state of com-

putation

• Examples

– Literals: 3, true, "a string", 42.323

– Aggregates: arrays, records, sets, lists,

. . . . Ex. {1,3,5}

– Function calls: f(a,b), a+b*(c-d),

(if x>0 then sin else cos)([[pi]])

– Conditional expressions:

if x <> 0 then a/x else 1,

case (only in functional languages)

– Named constants and variables: pi, x

13

Expressions

• Mathematical expressions better behaved

than commands

• Meaning of a (pure) expression is opera-

tion that returns a value based on current

contents of memory and explicit values

14

Referential Transparency

• System is referentially transparent if in fixed

context the meaning of the whole system

can be determined by meaning of its parts.

• Independent of surrounding expression

• Once expression is evaluated in a particular

context its value in that context will not

change

• Mathematical expressions referentially trans-

parent

• Context: a = 3, b = 4, c = 7, x = 2

• Evaluating (2ax+ b)(2ax+ c) only requires

evaluating 2ax once

15

Ref. Trans. Examples

• Can determine meaning of f(g(x)) by know-

ing independent meaning of f, g and x

• If know that g’ is the same as g, then know

f(g(x)) is the same as f(g’(x))

• Equivalences important for program trans-

formations used in optimization

16

Side Effects

• Side effect — expression does more than

return value

• Example f(x) returns a value but also in-

crements x by 1

• Lose referential transparency if side effects

allowed

• Can’t count on f(x) + f(x) being the same

as 2*f(x)

• Easier to prove a program correct if refer-

entially transparent

17

Imperative Languages and Ref.

Transparency

• Lose referential transparency with impera-

tive languages

• Consider x : x + y; y := 2 * x; and

y := 2 * x; x : x + y;

• Rationale:

– Each command changes underlying state

of computation

– Evaluation depends on state

– Ordering critical

18

Issues with Expressions

• Order of evaluation

– Ex. short-circuited evaluation of boolean

expressions

– if i >= 0 and A[i] <> 99 then ...

– What if int A[100] and i = -1?

• Side effects

• Treating expressions and commands iden-

tically (Algol 68, C)

– Artificial and loses referential transparency

– x = (y = x + 1) + y + (x++)

– Compare 2*(x++) and (x++)+(x++)

19

Pure Functional Languages

• Program is application of function to data

• Pure expressions — no side effects

• Expressions and functions are first class

(used as data)

• No traditional notion of memory or assign-

ment

• Promote reasoning about programs

• Support parallel implementation

20

History of Functional

Languages

• Theoretical foundations:

– Gödel’s general recursive functions

– Use of lambda calculus by Church and

Kleene as model of computable func-

tions

– Church’s thesis

• LISP — John McCarthy (1958-60). Origi-

nally used for symbolic differentiation with

linked lists. Many dialects. Finally, Com-

mon LISP and Scheme.

21

History (cont)

• Denotational semantics — meaning of pro-

grams as functions (1960’s)

• Backus’ Turing award lecture, 1978. Lan-

guage called FP (now FL).

• ML compiler, Robin Milner et al., 1977.

First standard 1986, second 1997.

• Other languages SASL, KRC, Miranda (David

Turner), Haskell. Use lazy evaluation.

22

Schools of Functional

Languages

• LISP/Scheme

(dynamic typing, imperative)

• Strict (eager evaluation) — ML, Hope

(static typing, imperative, polymorphic func-

tions, type inference)

• Lazy (evaluation) — Miranda, Haskell

(static typing, polymorphic functions, type

inference)

23

