Exception Handling

e Exception handling is a language feature that allows
the programmer to handle runtime "exceptional
conditions.”

e What is an "exceptional condition”?

-~ hardware error
- failure in underlying software

- any anomalous event

e It need not be erroneous -- just something that
requires special handling.

Chapter 13, Slide 1



Terminology

e An exception is raised, or signalled, when its
associated condition occurs.

e The code that is executed after an exception is
raised is called the exception handler. This code
processes the exception.

Chapter 13, Slide 2



Issues

e Form of handler.

- Complete program unit, or code segment?

e Location of handler.

- Are exceptions handled in unit where raised, in calling
unit, or elsewhere?

e Binding of handlers to exceptions.

- Static or dynamic?
o Transfer of control after exception is handled.

- Allow unit that raised exception to continue
executing?

Chapter 13, Slide 3



Issues (continued)

e Default exception handlers.

- Should they be provided?

e Specification of user-defined exceptions.

- Form, location, scope.

e Built-in exceptions.

- Can the user raise them explicitly?

e Disabling of exceptions.

- Should it be allowed?

Chapter 13, Slide 4



Exceptions in PL/I

e Conditions = exceptions

e Built-in and user-defined

e Default handlers for built-in conditions, but can be
overridden.

e Dynamic binding of handlers to exceptions

e Handlers are code segments, no parameters

e After handling exception, can send control
anywhere. Default handlers go to raise of or cause.

Chapter 13, Slide 5



PL/l Example

declare condition bad_input;

on condition bad_input
begin;

end;

read(x);
if (x<0) or (x> 10) then
signal condition bad_input;

Chapter 13, Slide 6



Exceptions in CLU

e More restricted than PL/I

e Static binding of handlers to exceptions

e Handlers are attached to statements

e Exceptions must be handled by calling routine

¢ Unit raising exception is terminated; control
transfers to statement following that with handler

e No disabling of exceptions

e Handlers can have parameters

e Exception failure raised if an exception has no
handler

Chapter 13, Slide 7



CLU Example

begin
x = f(y);
z :=g(h);
end

except when bad_input(c):

end

f = proc (<formals>)
signals(bad_input(char))
begin

signal(bad_input(. . .))

Chapter 13, Slide 8



Exceptions in Ada

e Less restrictive than CLU, more controlled than PL/I

e Static binding of handlers to exceptions, but if no
local handler, exception is propagated back call
chain

e Handlers have no parameters

e Block that raises exception terminates, but
enclosing block may continue execution.

e Disabling of exceptions possible

Chapter 13, Slide 9



Ada — Error Recovery

procedure Sort (X: in out ELEM_ARRAY ) is

begin

exception

end Sort ;

Copy: ELEM_ARRAY ;

-- Take a copy of the array to be sorted.
foriin ELEM_ ARRAY’RANGE loop
Copy (i) ==X (i) ;
end loop ;
-- Code here to sort the array X in ascending order
-- Now test that the array is actually sorted
foriin ELEM_ARRAY’FIRST..ELEM_ARRAY’LAST-1 loop
if X (1)>X(@{+1)then
-- a problem has been detected - raise exception
raise Sort_error ;
end if ;
end loop ;

-- restore state and indicate to calling procedure
-- that a problem has arisen
when Sort_error =>

foriin ELEM_ ARRAY’RANGE loop
X (i) := Copy (i) ;
end loop ;

raise ;

-- unexpected exception. Restore state and indicate

-- that the sort has failed

when Others =>
foriin ELEM ARRAY’RANGE loop
X (i) := Copy (i) ;

end loop ;

raise Sort_error;

Chapter 13, Slide 10



Summary

e Trade-offs between power, flexibility (PL/l) and
safety (CLU).

-~ Ada provides a compromise.
e Butis exception handling really necessary?

- Arguments both ways (Black, "Exception Handling:
The Case Against")

Chapter 13, Slide 11



Handling Exceptions
without Exception Handling

e Two approaches:
- Pass a "status variable."”

- Pass a subroutine to be called under certain
conditions.

e In both cases, the exception handling is provided by
the caller.

e To handle an exception locally, simply insert
appropriate code.

Chapter 13, Slide 12



