
Chapter 13, Slide 1

Exception Handling

Exception handling is a language feature that allows
the programmer to handle runtime "exceptional
conditions."

What is an "exceptional condition"?

hardware error

failure in underlying software

any anomalous event

It need not be erroneous -- just something that
requires special handling.

Chapter 13, Slide 2

Terminology

An exception is raised, or signalled, when its
associated condition occurs.

The code that is executed after an exception is
raised is called the exception handler. This code
processes the exception.

Chapter 13, Slide 3

Issues

Form of handler.

Complete program unit, or code segment?

Location of handler.

Are exceptions handled in unit where raised, in calling
unit, or elsewhere?

Binding of handlers to exceptions.

Static or dynamic?

Transfer of control after exception is handled.

Allow unit that raised exception to continue
executing?

Chapter 13, Slide 4

Issues (continued)

Default exception handlers.

Should they be provided?

Specification of user-defined exceptions.

Form, location, scope.

Built-in exceptions.

Can the user raise them explicitly?

Disabling of exceptions.

Should it be allowed?

Chapter 13, Slide 5

Exceptions in PL/I

Conditions = exceptions

Built-in and user-defined

Default handlers for built-in conditions, but can be
overridden.

Dynamic binding of handlers to exceptions

Handlers are code segments, no parameters

After handling exception, can send control
anywhere. Default handlers go to raise of or cause.

Chapter 13, Slide 6

PL/I Example

declare condition bad_input;

. . .

on condition bad_input

 begin;

 . . .

 end;

. . .

read(x);

if (x < 0) or (x > 10) then

signal condition bad_input;

Chapter 13, Slide 7

Exceptions in CLU

More restricted than PL/I

Static binding of handlers to exceptions

Handlers are attached to statements

Exceptions must be handled by calling routine

Unit raising exception is terminated; control
transfers to statement following that with handler

No disabling of exceptions

Handlers can have parameters

Exception failure raised if an exception has no
handler

Chapter 13, Slide 8

CLU Example

begin

x := f(y);

z := g(h);

end

except when bad_input(c):

 . . .

end

f = proc (<formals>)

signals(bad_input(char))

begin

. . .

signal(bad_input(. . .))

. . .

Chapter 13, Slide 9

Exceptions in Ada

Less restrictive than CLU, more controlled than PL/I

Static binding of handlers to exceptions, but if no
local handler, exception is propagated back call
chain

Handlers have no parameters

Block that raises exception terminates, but
enclosing block may continue execution.

Disabling of exceptions possible

Chapter 13, Slide 10

Ada — Error Recovery

procedure Sort (X: in out ELEM_ARRAY) is
Copy: ELEM_ARRAY ;

begin
 -- Take a copy of the array to be sorted.
 for i in ELEM_ARRAY’RANGE loop
 Copy (i) := X (i) ;
 end loop ;
 -- Code here to sort the array X in ascending order
 -- Now test that the array is actually sorted
 for i in ELEM_ARRAY’FIRST..ELEM_ARRAY’LAST-1 loop
 if X (i) > X (i + 1) then
 -- a problem has been detected - raise exception
 raise Sort_error ;
 end if ;
 end loop ;
exception
 -- restore state and indicate to calling procedure
 -- that a problem has arisen
 when Sort_error =>
 for i in ELEM_ARRAY’RANGE loop
 X (i) := Copy (i) ;
 end loop ;
 raise ;
 -- unexpected exception. Restore state and indicate
 -- that the sort has failed
 when Others =>
 for i in ELEM_ARRAY’RANGE loop
 X (i) := Copy (i) ;
 end loop ;
 raise Sort_error;
end Sort ;

Chapter 13, Slide 11

Summary

Trade-offs between power, flexibility (PL/I) and
safety (CLU).

Ada provides a compromise.

But is exception handling really necessary?

Arguments both ways (Black, "Exception Handling:
The Case Against")

Chapter 13, Slide 12

Handling Exceptions
without Exception Handling

Two approaches:

Pass a "status variable."

Pass a subroutine to be called under certain
conditions.

In both cases, the exception handling is provided by
the caller.

To handle an exception locally, simply insert
appropriate code.

