Names and Binding

In Text: Chapter 4

Outline

m Names/Identifiers
m Binding

m Type Checking

m Scope

m Chapter 4: Names and Binding ® 2

Names (User-defined Identifiers)

m Design issues:

m Maximum length?

m Are connector characters allowed?

m Are names case sensitive?

m Are special words reserved words or keywords?
m Length

m FORTRAN I: maximum 6

= COBOL: maximum 30

m FORTRAN 90 and ANSI C: maximum 31

m Ada: no limit, and all are significant

m C++: no limit, but implementers often impose one
m Connector characters (e.g., _)

m Pascal, Modula-2, and FORTRAN 77 don't allow

m Others do

 Chapter 4: Names and Binding m 3




More Design Issues

m Case sensitivity
m Disadvantage: readability (names that look alike are
different)
m worse in Modula-2 because predefined names are mixed
case (e.g. WriteCard)
m C, C++, Java, and Modula-2 names are case sensitive
m Names in most other languages are not

m Special words
m A keyword is a word that is special only in certain
contexts
m Disadvantage: poor readability
m A reserved word is a special word that cannot be used
as a user-defined name

m Chapter 4: Names and Binding m 4

Identifiers Have 6 Attributes

m A variable is an abstraction of a memory cell
m A (variable) identifier has 6 attributes:

m Name

m Address

u Type

m Representation/Value

m Scope

m Lifetime

m Chapter 4: Names and Binding ® 5

6 Attributes (cont.)
I ——
1. Name

m = identifier
m can be one-one, many-one, or none-one mapping to
memory
2. Address
m point to a location in memory
m may vary dynamically
m Two names for same address = aliasing
3. Type
m range of values + legal operations
m variable, constant, label, pointer, program, ...

 Chapter 4: Names and Binding m 6




6 Attributes (cont.)
I ——
4. Representation/Value

m interpreted contents of the location
ml-value (address)
mr-value (value)
5. Scope
m Range of statements over which the variable is visible
m Static/dynamic
6. Lifetime

m Time during which the variable is bound to a storage
location

m Chapter 4: Names and Binding m 7

Binding
I ——
m A binding is an association, such as between an attribute

and an entity, or between an operation and a symbol
m Binding time is the time at which a binding takes place
m Possible binding times:

1. Language design time--e.g., bind operator symbols to operations

2. Language implementation time--e.g., bind floating point type to a

representation

Compile time--e.g., bind a variable to a type in C or Java

. Load time--e.g., bind a FORTRAN 77 variable (or a C static
variable) to a memory cell

. Runtime--e.g., bind a nonstatic local variable to a memory cell

s w

vl

m Chapter 4: Names and Binding ® 8

Static and Dynamic Binding
I ——
m A binding is static if it occurs before run time and

remains unchanged throughout program execution
m A binding is dynamic if it occurs during execution
or can change during execution of the program
= In many ways, binding times for various attributes
determine the flavor of a language
m As binding time gets earlier:
m efficiency goes up
m safety goes up
u flexibility goes down

 Chapter 4: Names and Binding m 9




Type Bindings

Two key issues in binding a type to an identifier:

1. How is a type specified?
2. When does the binding take place?

 Chapter 4: Names and Binding m 10

Static Type Binding

m If static, type may be specified by either an
explicit or an implicit declaration

= An explicit declaration is a program statement
used for declaring the types of variables

m An implicit declaration is a default mechanism
for specifying types of variables (the first
appearance of the variable in the program)

m FORTRAN, PL/I, BASIC, and Perl provide implicit
declarations
m Advantage: writability
m Disadvantage: reliability (less trouble with Perl)

m Chapter 4: Names and Binding ® 11

Dynamic Type Binding

m Specified through an assignment statement (APL,
Smalltalk, etc.)

LIST<-2468
LIST <-17.3
m Advantage: flexibility (generic program units)
m Disadvantages:
m Type error detection by the compiler is difficult

m High cost (dynamic type checking and interpretation) or
low safety

m Type Inferencing (ML, Miranda, and Haskell)

m Rather than by assignment statement, types are
determined from the context of the reference

 Chapter 4: Names and Binding m 12




Storage Bindings

m Allocation--getting a cell from some pool of
available cells

m Deallocation--putting a cell back into the pool
m The lifetime of a variable is the time during
which it is bound to a particular memory cell

 Chapter 4: Names and Binding m 13

Categories of Variables by Lifetimes

m Static

m Stack-dynamic

m Explicit heap-dynamic
m Implicit heap-dynamic

m Chapter 4: Names and Binding ® 14

Static Lifetime

I mmmmm————

m Bound to memory cells before execution begins

and remains bound to the same memory cell(s)
throughout execution

m Examples:

m All FORTRAN 77 variables

m C and C++ static variables
m Advantages:

m Efficiency (direct addressing)

m History-sensitive subprogram support
m Disadvantage:

m Lack of flexibility (no recursion)

m Chapter 4: Names and Binding m 15




Stack-Dynamic Lifetime

m Storage bindings are created for variables when their
declaration statements are elaborated
m If scalar, all attributes except address are statically bound
m Examples:
m Local variables in Pascal and C subprograms
m Locals in C++ methods
m Advantages:
m Allows recursion
m Conserves storage
m Disadvantages:
m Overhead of allocation and deallocation
m Subprograms cannot be history sensitive
m Inefficient references (indirect addressing)

 Chapter 4: Names and Binding m 16

Explicit Heap-Dynamic Lifetime
I ——
m Allocated and deallocated by explicit directives, specified

by the programmer, which take effect during execution
m Referenced only through pointers or references
m Examples:

m Dynamic objects in C++ (via new and delete)
m All objects in Java

m Advantage:

m Provides for dynamic storage management
m Explicit control

m Disadvantage:
m Potential for human error

m Chapter 4: Names and Binding ® 17

Implicit Heap-Dynamic Lifetime
I mmmmm————
m Allocation and deallocation is implicit, based on

language semantics (e.g., caused by assignment
statements)

m Ex.: all variables in APL
m Advantage:

m Flexibility
m Disadvantages:

m Inefficient, because often all attributes are dynamic
m May have delay in error detection

 Chapter 4: Names and Binding m 18




Type Checking

m Generalize the concept of operands and operators
to include subprograms and assignments

m Type checking is the activity of ensuring that the
operands of an operator are of compatible types

m A compatible type is one that is either:
mLegal for the operator, or
m Allowed under language rules to be implicitly

converted to a legal type by compiler-generated
code

m This automatic conversion is called a coercion

 Chapter 4: Names and Binding m 19

Type Errors

m A type error is the application of an operator to
an operand of an inappropriate type

m If all type bindings are static, nearly all type
checking can be static

m If type bindings are dynamic, type checking must
be dynamic

m A programming language is strongly typed if
type errors are always detected

m In practice, languages fall on a continuum
between strongly typed and untyped

m Chapter 4: Names and Binding ® 20

Strong Typing

m Advantage of strong typing: allows the detection of the
misuses of variables that result in type errors
m Languages:
m FORTRAN 77 is not: parameters, EQUIVALENCE
m Pascal is not: variant records
m Modula-2 is not: variant records, WORD type

m C and C++ are not: parameter type checking can be avoided;
unions are not type checked

m Ada is, almost (UNCHECKED CONVERSION is loophole)
m (Java is similar)
m Coercion rules strongly affect strong typing—they can
weaken it considerably (C++ versus Ada)

 Chapter 4: Names and Binding m 2




Type Compatibility: Name Equiv.

m Type compatibility by name ("name equivalence”)
means the two variables have compatible types if they are
in either the same declaration or in declarations that use
the same type name

m Easy to implement but highly restrictive:

m Subranges of integer types are not compatible with integer types
m Formal parameters must be the same type as their corresponding
actual parameters (Pascal)

m Predefined or user-supplied coercions can ease restrictions,
but also create more potential for error

 Chapter 4: Names and Binding m 22

Type Compatibility: Structural Equiv.

m Type compatibility by structure (“structural
equivalence”) means that two variables have
compatible types if their types have identical
structures

m More flexible, but harder to implement

m Makes it more difficult to use a type checking to
detect certain types of errors (e.g., preventing
inconsistent unit usage in Ada)

m Chapter 4: Names and Binding ® 23

Scope
I ——
m The scope of a variable is the range of

statements over which it is visible
m The nonlocal variables of a program unit are
those that are visible but not declared there
m The scope rules of a language determine how
references to names are associated with variables
m Scope and lifetime are sometimes closely related,
but are different concepts!!
m Consider a static variable in a C or C++ function

 Chapter 4: Names and Binding m 24




Static (Lexical) Scope

m Based on program text

m To connect a name reference to a variable, you
(or the compiler) must find the declaration

m Search process: search declarations, first locally,
then in increasingly larger enclosing scopes, until
one is found for the given name

m Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent

 Chapter 4: Names and Binding m 25

Variable Hiding
I ——
m Variables can be hidden from a unit by having a
“closer” variable with the same name (closer ==
more immediate enclosing scope)

m C++ and Ada allow access to these “hidden”
variables (using fully qualified names)

m Blocks are a method of creating static scopes
inside program units—from ALGOL 60

m Chapter 4: Names and Binding ® 26

Dynamic Scope
I ——
m Based on calling sequences of program units, not

their textual layout (temporal versus spatial)

m References to variables are connected to
declarations by searching back through the chain
of subprogram calls that forced execution to this
point

m Effectively, searching “downward” through the call

stack looking for an activation record possessing
the declaration

 Chapter 4: Names and Binding m 27




Example

program foo; What value is printed?
var x: integer;
procedure f; E—
begin ; H
PtCO); Evalu:ate .WIth static
end f; _— scoping:
procedure g; x=1
var x: integer;
begin
X:i=2;
f; Evaluate with
endg; dynamic scoping:
begin _
x:=1; x=2
9;
end foo.

 Chapter 4: Names and Binding m 28

Static vs. Dynamic Scoping

m Advantages of static scoping:
m Readability
m Locality of reasoning
m Less run-time overhead
m Disadvantages:
m Some loss of flexibility
m Advantages of dynamic scoping:
m Some extra convenience
m Disadvantages:
m Loss of readability
m Unpredictable behavior (no locality of reasoning)
m More run-time overhead

m Chapter 4: Names and Binding ® 29

Referencing Environments

m The referencing environment of a statement is
the collection of all names that are visible in the
statement

m In a static scoped language, that is the local
variables plus all of the visible variables in all of
the enclosing scopes (see ex., p. 184)

m A subprogram is active if its execution has begun
but has not yet terminated

m In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms (see ex., p.
185)

 Chapter 4: Names and Binding m 30

10



Variable Initialization
I ——
m The binding of a variable to a value at the time it

is bound to storage is called initialization
m Often done on the declaration statement
m An Ada example:
sum : Float := 0.0;

m Can be static or dynamic (depending on when
storage is bound)

m Typically once for static variables, once per
allocation for non-static variables

 Chapter 4: Names and Binding m 31

11



