
Data Types

In Text: Chapter 6e t C apte 6

1

OutlineOutline

What is a type?What is a type?
Primitives
St iStrings
Ordinals
Arrays
RecordsRecords
Sets
P i tPointers

2Chapter 6: Data Types

Data TypesData Types
Two components:Two components:

Set of objects in the type (domain of values)
Set of applicable operations

May be determined:
Statically (at compile time)
Dynamically (at run time)

A language’s data types may be:
B il iBuilt-in
Programmer-defined

A declaration explicitly associates an identifierA declaration explicitly associates an identifier
with a type (and thus representation)

3Chapter 6: Data Types

Design Issues for All Data TypesDesign Issues for All Data Types

How is the domain of values specified?How is the domain of values specified?

What operations are defined and how are they
f dspecified?

What is the syntax of references to variables?What is the syntax of references to variables?

4Chapter 6: Data Types

Primitive Data TypesPrimitive Data Types

A primitive type is one that is not defined inA primitive type is one that is not defined in
terms of other data types
Typical primitives include:Typical primitives include:

Boolean
Cha acteCharacter
Integral type(s)
Fi d i t t ()Fixed point type(s)
Floating point type(s)

5Chapter 6: Data Types

BooleanBoolean

Used for logical decisions/conditionsUsed for logical decisions/conditions

Could be implemented as a bit, but usually
bas a byte

Advantage: readabilityAdvantage: readability

6Chapter 6: Data Types

IntegerInteger

Almost always an exact reflection of theAlmost always an exact reflection of the
hardware, so the mapping is trivial

h b d ffThere may be many different integer types in a
language

Short, Int, Long, Byte

Each such integer type usually maps to aEach such integer type usually maps to a
different representation supported by the
machinemachine

7Chapter 6: Data Types

Fixed Point (Decimal) TypesFixed Point (Decimal) Types

Originated with business applications (money)Originated with business applications (money)

Store a fixed number of decimal digits
(d d)(coded)

Advantage: accuracyAdvantage: accuracy

0.1

Disadvantages: limited range, wastes memory

8Chapter 6: Data Types

Floating Point TypesFloating Point Types

Model real numbers, but only as approximationsModel real numbers, but only as approximations

Languages for scientific use support at least two
floating-point types; sometimes morefloating-point types; sometimes more

Float, Double

U ll tl lik th h d b t t lUsually exactly like the hardware, but not always; some
languages allow accuracy specs in code (e.g., Ada):
type Speed istype Speed is

digits 7 range 0.0..1000.0;
type Voltage is

delta 0.1 range -12.0..24.0;

See book for representation (p. 237)

9Chapter 6: Data Types

Sign, Exponent, Fraction

Character String TypesCharacter String Types

Values are sequences of charactersValues are sequences of characters
Design issues:

Is it a primitive type or just a special kind ofIs it a primitive type or just a special kind of
array?
Is the length of objects fixed or variable?Is the length of objects fixed or variable?

Operations:
AssignmentAssignment
Comparison (=, >, etc.)
C iConcatenation
Substring reference

10Chapter 6: Data Types

Pattern matching

Examples of String SupportExamples of String Support

PascalPascal
Not primitive; assignment and comparison only (of packed
arrays)

Ada, FORTRAN 77, FORTRAN 90 and BASIC
Somewhat primitive
Assignment, comparison, concatenation, substring referenceAssignment, comparison, concatenation, substring reference
FORTRAN has an intrinsic for pattern matching
Examples (in Ada)

N := N1 & N2 (catenation)N := N1 & N2 (catenation)
N(2..4) (substring reference)

C (and C++ for some people)C (and C++ for some people)
Not primitive
Use char arrays and a library of functions that provide
operations

11Chapter 6: Data Types

operations

Other String ExamplesOther String Examples

SNOBOL4 (a string manipulation language)SNOBOL4 (a string manipulation language)
Primitive
Many operations including elaborate patternMany operations, including elaborate pattern
matching

P lPerl
Patterns are defined in terms of regular expressions
A very powerful facility!
/[A-Za-z][A-Za-z₩d]*/

Java and C++ (with std library)
String class (not array of char)

12Chapter 6: Data Types

String class (not array of char)

String Length OptionsString Length Options

Fixed (static) length (fixed size determined atFixed (static) length (fixed size determined at
allocation)

FORTRAN 77, Ada, COBOL
A FORTRAN 90 example:

CHARACTER (LEN = 15) NAME;

Limited dynamic length (fixed maximum size at
allocation, but actual contents may be less), y)

C and C++ char arrays: actual length is indicated by a null
character

Dynamic length (may grow and shrink after
allocation)

SNOBOL4 P l

13Chapter 6: Data Types

SNOBOL4, Perl

Evaluation of String TypesEvaluation of String Types

Supporting strings is an aid to readability and writabilitySupporting strings is an aid to readability and writability

As a primitive type with fixed length, they are
inexpensive to provide—why not have them?inexpensive to provide why not have them?

Dynamic length is nice, but is it worth the expense?

Implementation:

Static length — compile-time descriptor

Limited dynamic length — may need a run-time descriptor
fo length (b t not in C and C++)for length (but not in C and C++)

Dynamic length — need run-time descriptor;
allocation/deallocation is the biggest implementation problem

14Chapter 6: Data Types

allocation/deallocation is the biggest implementation problem

User-Defined Ordinal TypesUser Defined Ordinal Types

An ordinal type is one in which the range ofAn ordinal type is one in which the range of
possible values can be easily associated with
the set of positive integersthe set of positive integers

T ki dTwo common kinds:

Enumeration typesEnumeration types

Subrange types

15Chapter 6: Data Types

Enumeration TypesEnumeration Types
The user enumerates all of the possible values, whichThe user enumerates all of the possible values, which
are symbolic constants
Design Issue: Should a symbolic constant be allowed to g y
be in more than one type definition?
Examples:

Pascal — cannot reuse constants; ETs can be used for array
subscripts, for variables, case selectors; no input or output;
can be comparedcan be compared
Ada — constants can be reused (overloaded literals); can be
used as in Pascal; input and output supported
C and C++ — like Pascal, except they can be input and output
as integers
Java does not include an enumeration type

16Chapter 6: Data Types

Java does not include an enumeration type

Subrange TypesSubrange Types
An ordered, contiguous subsequence of anotherAn ordered, contiguous subsequence of another
ordinal type
Design Issue: How can they be used?Design Issue: How can they be used?
Examples:

Pascal—subrange types behave as their parent types;Pascal subrange types behave as their parent types;
can be used as for variables and array indices

type pos = 0 .. MAXINT;type pos 0 .. MAXINT;

Ada—subtypes are not new types, just constrained
existing types (so they are compatible); can be used as g yp (y p);
in Pascal, plus case constants

subtype Pos_Type is

17Chapter 6: Data Types

Integer range 0 ..Integer'Last;

Evaluation of Ordinal TypesEvaluation of Ordinal Types

Aid readability and writeabilityAid readability and writeability

Improve reliability — restricted ranges add
error detection abilitiy

Implementation of user-defined ordinal types:Implementation of user defined ordinal types:

Enumeration types are implemented as
integers

Subrange types are the parent types; codeSubrange types are the parent types; code
may be inserted (by the compiler) to restrict

i t t b i bl
18Chapter 6: Data Types

assignments to subrange variables

ArraysArrays

An array is an aggregate of homogeneousAn array is an aggregate of homogeneous
data elements in which an individual element
is identified by its positionis identified by its position
Design Issues:

What types are legal for subscripts?What types are legal for subscripts?
Are subscript values range checked?
Wh b i t b d?When are subscript ranges bound?
When does allocation take place?
Wh t i th i b f b i t ?What is the maximum number of subscripts?
Can array objects be initialized?
A ki d f li ll d?

19Chapter 6: Data Types

Are any kind of slices allowed?

Array IndexingArray Indexing

Indexing is a mapping from indices to elementsIndexing is a mapping from indices to elements

S tSyntax
FORTRAN, PL/I, Ada use parentheses
Most others use brackets

20Chapter 6: Data Types

Array Subscript TypesArray Subscript Types

What type(s) are allowed for defining arrayWhat type(s) are allowed for defining array
subscripts?

lFORTRAN, C — int only

Pascal — any ordinal typePascal any ordinal type
int, boolean, char, enum

Ada — int or enum
including boolean and char

Java — integer types only

21Chapter 6: Data Types

Four Categories of ArraysFour Categories of Arrays

Four categories based onFour categories, based on
subscript binding and storage binding:

Static

Fixed stack-dynamic All three allocated Fixed stack dynamic

Stack-dynamic
on the runtime stack

Heap-dynamic

22Chapter 6: Data Types

Static ArraysStatic Arrays
Range of subscripts and storage bindings are static g p g g

Range : compile time
Storage : initial program load time

Examples: FORTRAN 77, global arrays in C++, Static
arrays (C/C++), some arrays in Ada

Advantage:
Execution efficiencyExecution efficiency
no need for explicit allocation / deallocation

Di d tDisadvantages:
Size must be known at compile time
Bindings are fixed for entire program

23Chapter 6: Data Types

Bindings are fixed for entire program

Fixed Stack-Dynamic ArraysFixed Stack Dynamic Arrays

Range of subscripts is statically bound butRange of subscripts is statically bound, but
storage is bound at elaboration time
Examples:Examples:

Pascal locals, C/C++ locals
Think C/C++ a a s decla ed in callable p oced esThink: C/C++ arrays declared in callable procedures

Advantages:
Space efficiency
Supports recursion

Disadvantage:
Must know size at compile time

24Chapter 6: Data Types

Stack-Dynamic ArraysStack Dynamic Arrays
Range and storage are dynamic, but fixed forRange and storage are dynamic, but fixed for
the remainder of the time its defining procedure
is active
Examples: Ada locals in a procedure or block
and having range specified by a variableg g p y

List : array (1..X) of integer

Advantage:Advantage:
Flexibility — size need not be known until the
array is about to be usedarray is about to be used

Disadvantage:
O d i i fi d

25Chapter 6: Data Types

Once created, array size is fixed

Heap-Dynamic ArraysHeap Dynamic Arrays
Subscript range and storage bindings areSubscript range and storage bindings are
dynamic and and can change at any time
Examples: FORTRAN 90, Ada, APL, PerlExamples: FORTRAN 90, Ada, APL, Perl

List : array [*] of integer
List = (1, 2, 3, 4)
List = (1, 5, 6, 10, 19, 4 , 7, 8)

Advantage:Advantage:
Ultimate in flexibility

Di d tDisadvantages:
More space (may be) required

26Chapter 6: Data Types

Run-time overhead

Summary: Array BindingsSummary: Array Bindings

Binding times for ArrayBinding times for Array
subscript range storage

static: compile time compile time

fixed stack dynamic: compile time decl. elaboration
time

stack dynamic: runtime, but fixed thereafter

d i ti tidynamic: runtime runtime

27Chapter 6: Data Types

Number of Array SubscriptsNumber of Array Subscripts

FORTRAN I allowed up to threeFORTRAN I allowed up to three
FORTRAN 77 allows up to seven

Some languages have no limits

Others allow just one,Others allow just one,
but elements themselves can be arrays

28Chapter 6: Data Types

Array InitializationArray Initialization
List of values put in array in the order in which theList of values put in array in the order in which the
array elements are stored in memory

Examples:Examples:
FORTRAN—uses the DATA statement, or

put the values in / ... / on the declarationp / /

C and C++ — put the values in braces at declaration
lets compiler count them (int stuff [] = {2, 4, 6, 8};)p ([] { , , , };)

Ada — positions for the values can be specified:
SCORE : array (1..14, 1..2) :=SCORE : array (1..14, 1..2) :

(1 => (24, 10), 2 => (10, 7),

3 =>(12, 30), others => (0, 0));

29Chapter 6: Data Types

Pascal and Modula-2 do not allow array initialization

Array OperationsArray Operations
APLAPL

Reverse elements in vector
Reverse rows or columns
Transpose (switch rows and colums), invert elements
multiply or compute vector “dot product”

Ada
In assignmentIn assignment

RHS can be an aggregate, array name, or slice
LHS can also be a slice

Catenation for single-dimensioned arrays
Equality/inequality operators (= and /=)

30Chapter 6: Data Types

q y/ q y p (/)

Array SlicesArray Slices
A slice is some substructure of an arrayA slice is some substructure of an array

nothing more than a referencing mechanism

Sli E lSlice Examples:
FORTRAN 90

INTEGER MAT (1 4 1 4)INTEGER MAT (1 : 4, 1 : 4)
MAT(1 : 4, 1)

Th fi t l (1 4 f l 1)The first column (rows 1 – 4 of column 1)

MAT(2, 1 : 4)
The second row (2nd row of columns 1 4)The second row (2nd row of columns 1 – 4)

Ada — single-dimensioned array slice:
LIST(4 10) (l t 4 10)

31Chapter 6: Data Types

LIST(4..10) (elements 4-10)

Implementation of ArraysImplementation of Arrays
Storage is LINEARStorage is LINEAR

Row major: data elementsRow major: data elements
are stored in linear
memory by ROWSmemory by ROWS

C/C++, Ada

Column major order: data
elements are stored inelements are stored in
linear memory by columns

FORTRAN

32Chapter 6: Data Types

Access Functions for ArraysAccess Functions for Arrays

Access function maps subscript expressions to aAccess function maps subscript expressions to a
address corresponding to intended position in
arrayarray

A [15] f XA: array [15] of X

Compute location of a[k]

(Add f [1]) ((k 1) * i f (X))(Addr of a[1]) + ((k-1) * size of (X))

33Chapter 6: Data Types

Access Functions for ArraysAccess Functions for Arrays
A: array [8,9] of Xy [,]

Location of a[i,j] assuming row major storage
(Addr of a[1,1]) + ([,])

(((number of rows above ith row) * (size of row)) +
(number of elements to left of jth column)) * size of (X)

(Addr of a[1,1]) + (((I-1) * 9) + (j-1)) * size of (X)

A: array [8,9] of Xy [,]
Location of a[i,j] assuming column major storage
(Addr of a[1,1]) + ([,])

(((number of columns to left of jth column) * (size of col)) +
(number of elements above ith row)) * size of (X)

34Chapter 6: Data Types

(Addr of a[1,1]) + (((j-1) * 8) + (i-1)) * size of (X)

Associative ArraysAssociative Arrays

An associative array is an unordered collectionAn associative array is an unordered collection
of data elements that are indexed by an equal
number of values called keysnumber of values called keys

(key, data element) pair

Design Issues:
What is the form of references to elements?
Is the size static or dynamic?y

35Chapter 6: Data Types

Perl Associative Arrays
(H h)(Hashes)

Names begin with %
Literals are delimited by parenthesesLiterals are delimited by parentheses

%hi_temps = ("Monday" => 77,

"T d " 79)"Tuesday" => 79,…);

Subscripting is done using braces and keys
$hi_temps{"Wednesday"} = 83;

Elements can be removed with deleteElements can be removed with delete
delete $hi_temps{"Tuesday"};

RecordsRecords

A record is a possibly heterogeneousA record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by namesindividual elements are identified by names

D i IDesign Issues:
What is the form of references?
What unit operations are defined?

37Chapter 6: Data Types

Record Definition SyntaxRecord Definition Syntax

COBOL uses level numbers to show nestedCOBOL uses level numbers to show nested
records; others use recursive definitions

In C: In Ada:

typedef struct {
int field1;

type MyRecord is record
field1 : Integer;

float field2;
. . .

} M R d

g
field2 : Float;
. . .

d d} MyRecord; end record;

38Chapter 6: Data Types

Record Field ReferencesRecord Field References
COBOL:

field_name OF record_name_1 OF ...
OF record_name_n_ _

Others (dot notation):
record_name_1.record_name_2. ..._ _ _ _

.record_name_n.field_name

Fully qualified references must include all record y q
names
Elliptical references allow leaving out record names
as long as the reference is unambiguous
Pascal and Modula-2 provide a with clause to

39Chapter 6: Data Types

abbreviate references

Record OperationsRecord Operations

AssignmentAssignment
Pascal, Ada, and C++ allow it if the types are
identicalidentical

Initialization
Allo ed in Ada sing an agg egateAllowed in Ada, using an aggregate

Comparison
In Ada, = and /=; one operand can be an aggregate

MOVE CORRESPONDINGMOVE CORRESPONDING
In COBOL - it moves all fields in the source record to
fields with the same names in the destination record

40Chapter 6: Data Types

fields with the same names in the destination record

UnionsUnions

A union is a type whose variables areA union is a type whose variables are
allowed to store different types of values at
different times during executiondifferent times during execution

D i I f iDesign Issues for unions:
What kind of type checking, if any, must be
done?
Should unions be integrated with records?g

41Chapter 6: Data Types

Union ExampleUnion Example
discriminated uniondiscriminated union

tag stores type of current value
e.g., Pascal variant recorde.g., Pascal variant record

type rec =
record

case flag : bool of
true : (x : integer;

y : char);y : char);
false : (z : real)

end

var ex : rec;
ex.flag := true;

42Chapter 6: Data Types

ex.flag : true;
ex.x := 5

Type Checking IssuesType Checking Issues
System must check value of flag before each
variable accessvariable access

ex.flag := true;
ex.x := 10;

type rec =
recordex.x : 10;

:

print(ex.z); -- error

record
case flag : bool of

true : (x : integer;

Still not good enough!
ex.flag := true;

y : char);
false : (z : real)

endex.flag : true;
ex.x := 5;
ex.y := 'a';

end

ex.flag := false;
print (ex.z); -- this should be an error, but how to check

P bl i th t USER t t i d d tl

43Chapter 6: Data Types

• Problem is that USER can set tag independently

Free UnionsFree Unions
Pascal Declaration

type rec = record
case bool of

true : . . .
false : . . .

end

No tag variable is requiredNo tag variable is required

No storage for tag, so union is inherently unsafe.

S P l' i t i i i t l t tSo Pascal's union type is insecure in at least two ways.

C/C++ have free unions (No tags)

44Chapter 6: Data Types

Ada Union TypesAda Union Types

Similar to Pascal exceptSimilar to Pascal, except

- No free union
-Tag MUST be specified with union declaration

- When tag is changed, all appropriate fields must be g g pp p
set too.

ex := (flag => false,

z => 1.5)

So Ada union types are safeSo Ada union types are safe.

- Ada systems required to check the tag of all
f t i t

45Chapter 6: Data Types

references to variants

Algol 68 Union TypesAlgol 68 Union Types

Declaration but need conformity clauseDeclaration
union (int, real) ir1, ir2

but need conformity clause
to access value

real x;
Can assign either type .

ir1 := 5;

int count;

...

...

ir1 := 3.4;

count := ir1; -- illegal

;

case ir1 in

(int i) : count := i;

(real r) : x := r;

esac

46Chapter 6: Data Types

Union Type-CheckingU o yp g

Problem with Pascal’s design:Problem with Pascal s design:
Type checking is ineffective
User can create inconsistent unions (because the tag (g
can be individually assigned)
Also, the tag is optional (Free Union)!

Ada Discriminated UnionAda Discriminated Union
Tag must be present
All assignments to the union must include the tagAll assignments to the union must include the tag
value — tag cannot be assigned by itself
It is impossible for the user to create an inconsistent

47Chapter 6: Data Types

union

Evaluation of UnionsEvaluation of Unions

UsefulUseful

Potentially unsafe in most languages

Ada, Algol 68 provide safe versions

48Chapter 6: Data Types

PointersPointers

A pointer type is a type in which the rangeA pointer type is a type in which the range
of values consists of memory addresses and a
special value nil (or null)special value, nil (or null)

UUses:
Addressing flexibility
Dynamic storage management

49Chapter 6: Data Types

Pointer Design IssuesPointer Design Issues
What is the scope and lifetime of pointerWhat is the scope and lifetime of pointer
variables?

Wh t i th lif ti f h d i i bl ?What is the lifetime of heap-dynamic variables?

Are pointers restricted to pointing at aAre pointers restricted to pointing at a
particular type?

A i d f d iAre pointers used for dynamic storage
management, indirect addressing, or both?

Should a language support pointer types,
reference types, or both?

50Chapter 6: Data Types

yp , o bo

PointersPointers
Should be able to point to only one type of p y yp
object

DereferencingDereferencing

- explicit

- implicit

Used forUsed for

- dynamic vars only

- any kind of variable

51Chapter 6: Data Types

Dangling ReferenceDangling Reference
Pointer to variable that has been deallocated.

Pascal: C:

var p q : ^cell; int *p;var p,q : cell; int p;
begin int fun1(); {

new(p); int x;
q := p; p = &x;
dispose(p); ...

}
main () {
fun1 ();fun1 ();
}

52Chapter 6: Data Types

-- q is a dangling ref. -- *p is a dangling ref.

Preventing Dangling References

Tombstones

Preventing Dangling References

Pointers can't point directly to a dynamic variable

ith t t b twithout tombstone:

p1 dynamic

p2

dynamic
variable

with tombstone: extra level of indirection called a tombstone.

p1 tombstone dyn varp

p2

y

53Chapter 6: Data Types

Safe, but add space and time overhead

Preventing Dangling ReferencesPreventing Dangling References

Locks and KeysLocks and Keys
Additional information stored with pointers
nd d n mi i bleand dynamic variables:

pointer ≡ (key, address)
d bl (l k)dynamic variable ≡ (lock, var)

A pointer can only access a dynamic variable p y y
if its key matches the lock.

When a dynamic variable is deallocated itsWhen a dynamic variable is deallocated, its
lock is changed.

54Chapter 6: Data Types

Again, space and time overhead.

Garbage: Memory LeaksGarbage: Memory Leaks

An object is garbage if it is stored in anAn object is garbage if it is stored in an
inaccessible memory address.

Pascal:Pascal:
var p,q : ^cell;
beging

new(p);
new(q);
... -- assuming no dispose or reassign

p := q;

original p^'s storage is now garbageoriginal p^ s storage is now garbage
Wasteful, but not dangerous.

55Chapter 6: Data Types

AliasingAliasing

When two pointers refer to the same addressWhen two pointers refer to the same address

Pointers need not be in the same program unitp g

Changes made through one pointer affect the
behavior of code referencing the other pointer

When unintended, may cause unpredictability,
loss of locality of reasoning

56Chapter 6: Data Types

Pointer ExamplesPointer Examples
Pascal: used for dynamic storage managementPascal: used for dynamic storage management
only

Explicit dereferencingExplicit dereferencing
Dangling pointers and memory leaks are
possiblepossible

Ada: a little better than Pascal
I li it d f iImplicit dereferencing
All pointers are initialized to null
Similar dangling pointer and memory leak
problems for typical implementations

57Chapter 6: Data Types

Pointer Examples (cont.)Pointer Examples (cont.)

C and C++: for both dynamic storageC and C++: for both dynamic storage
management and addressing

Explicit dereferencing and address of operatorExplicit dereferencing and address-of operator

Can do address arithmetic in restricted forms

Domain type need not be fixed (void *)

FORTRAN 90 PointersFORTRAN 90 Pointers
Can point to heap and non-heap variables

Implicit dereferencing

Special assignment operator for non-dereferenced
f

58Chapter 6: Data Types

references

Evaluation of PointersEvaluation of Pointers

Dangling pointers and dangling objects areDangling pointers and dangling objects are
problems, as is heap management

Pointers are like goto's—they widen the range of
cells that can be accessed by a variable, but also
complicate reasoning and open up new problems

Pointers services are necessary so we can'tPointers services are necessary—so we can t
design a language without them

59Chapter 6: Data Types

Heap ManagementHeap Management

AllocationAllocation
Maintain a free list of available memory cells

Deallocation (Reclamation)
method 1: Reference Countingmethod 1: Reference Counting

Each cell has a tag with # of pointers to that cell.
When reference count = 0 => deallocate cell.When reference count 0 deallocate cell.
Advantage:

cost is distributed over time
Disadvantages:

space/time overhead in maintaining reference counts
won't collect circular structures

60Chapter 6: Data Types

won t collect circular structures

Heap ManagementHeap Management

Method 2a: Garbage Collection with mark-and-sweepMethod 2a: Garbage Collection with mark and sweep
Each cell has a mark bit.
Mark and Sweep:

set all mark bits to "garbage"
for each pointer into the heap, mark all reachable cells "not
garbage"g g
look at each cell in memory; if marked "garbage," reclaim.

Advantages:
l i ll breclaims all garbage

little space/no time overhead during normal execution
Disadvantages:g

must stop execution to garbage collect
fragmentation
time memory size

61Chapter 6: Data Types

time ~ memory size

Heap ManagementHeap Management
Method 2b: Garbage Collection with copying

Start with two heaps of same size
working heap + other heap

Copying:py g
allocate new cells in working heap
when working heap is full,

for each pointer into working heap, copy all reachable cells into
th hother heap.

other heap is new working heap, working heap is new other heap
Advantages:

both advantages of mark & sweep (reclaims all garbage, little space/no
time overhead during normal execution)
time ~ used cells, not total memory size
automatic compaction (ameliorates fragmentation)automatic compaction (ameliorates fragmentation)

Disadvantages
stopping to copy still a problem
need twice as much memory for heap => only practical with virtual

62Chapter 6: Data Types

need twice as much memory for heap => only practical with virtual
memory systems

Heap ManagementHeap Management

This is all much easier for fixed-sizeThis is all much easier for fixed size
allocate/deallocate than for variable-size:

Fixed size (& format) Lisp
Know where pointers are within cells
F t ti t blFragmentation not a problem

Variable size (& format)
Need header for each object in memory telling:

its size
h i i i h bjwhere it may contain pointers to other objects

Fragmentation is a problem--need compaction

63Chapter 6: Data Types

