Data Types

In Text: Chapter 6

What is a type?
Primitives
Strings

Ordinals

Arrays

Records

Sets

Pointers

B Chapter 6: Data Types ®

Nt
L/ CAUL

Two components:
= Set of objects in the type (domain of values)
= Set of applicable operations

May be determined:
= Statically (at compile time)
= Dynamically (at run time)

A language’s data types may be:

= Built-in

= Programmer-defined

A declaration explicitly associates an identifier
with a type (and thus representation)

B Chapter 6: Data Types ®

Design Issues for All Data Types

= How Is the domain of values specified?

= What operations are defined and how are they
specified?

= What Is the syntax of references to variables?

B Chapter 6: Data Types ®

Primitive Data Types

= A primitive type Is one that is not defined in
terms of other data types
= Typical primitives include:
= Boolean
Character
Integral type(s)
Fixed point type(s)
Floating point type(s)

B Chapter 6: Data Types ®

Boolean

= Used for logical decisions/conditions

= Could be implemented as a bit, but usually
as a byte

= Advantage: readability

B Chapter 6: Data Types ®

Integer

= Almost always an exact reflection of the
hardware, so the mapping is trivial

= There may be many different integer types in a
language

= Short, Int, Long, Byte

= Each such integer type usually maps to a

different representation supported by the
machine

B Chapter 6: Data Types ®

Fixed Point (Decimal) Types

V4

Originated with business applications (money)

Store a fixed number of decimal digits
(coded)

Advantage: accuracy
= 0.1

Disadvantages: limited range, wastes memory

B Chapter 6: Data Types ®

Floating Point Types

Model real numbers, but only as approximations

Languages for scientific use support at least two
floating-point types; sometimes more
= Float, Double

Usually exactly like the hardware, but not always; some

languages allow accuracy specs in code (e.g., Ada):
type Speed 1is
digits 7 range 0.0..1000.0;
type Voltage 1is
delta 0.1 range -12.0..24.0;

See book for representation (p. 237)

= Sign, Exponent, Fraction

B Chapter 6: Data Types ®

Character String Ty

J

= Values are sequences of characters
= Design Issues:

= |s It a primitive type or just a special kind of
array?

= |s the length of objects fixed or variable?
= Operations:

= Assignment

= Comparison (=, >, etc.)

= Concatenation

= Substring reference

= Pattern matching

B Chapter 6: Data Types ®

10

Examples of String Support
= Pascal
= Not primitive; assignment and comparison only (of packed
arrays)

= Ada, FORTRAN 77, FORTRAN 90 and BASIC
= Somewhat primitive
= Assignment, comparison, concatenation, substring reference
= FORTRAN has an intrinsic for pattern matching
= Examples (in Ada)
= N := N1 & N2 (catenation)
= N(2..4) (substring reference)

= C (and C++ for some people)
= Not primitive

= Use char arrays and a library of functions that provide
operations

B Chapter 6: Data Types ®

11

= SNOBOL4 (a string manipulation language)
= Primitive
= Many operations, including elaborate pattern
matching

= Perl
= Patterns are defined in terms of regular expressions

= A very powerful facility!
= [[A-Za-z][A-Za-zWd]*/

= Java and C++ (with std library)
= String class (not array of char)

B Chapter 6: Data Types ®

12

String Length Options

= Fixed (static) length (fixed size determined at
allocation)
= FORTRAN 77, Ada, COBOL
= A FORTRAN 90 example:

CHARACTER (LEN = 15) NAME;

= Limited dynamic length (fixed maximum size at
allocation, but actual contents may be less)

= C and C++ char arrays: actual length is indicated by a null
character

= Dynamic length (may grow and shrink after
allocation)
= SNOBOL4, Perl

B Chapter 6: Data Types ®

13

Evaluation of String

g Types

Supporting strings is an aid to readability and writability

As a primitive type with fixed length, they are
Inexpensive to provide—why not have them?

Dynamic length is nice, but is it worth the expense?

Implementation:
= Static length — compile-time descriptor

= Limited dynamic length — may need a run-time descriptor
for length (but not in C and C++)

= Dynamic length — need run-time descriptor;
allocation/deallocation is the biggest implementation problem

B Chapter 6: Data Types ® 14

User-Defined Ordinal Types

= An ordinal type is one in which the range of
possible values can be easily associated with
the set of positive integers

« Two common kinds:
= Enumeration types

= Subrange types

B Chapter 6: Data Types ®

15

Enumeration Types

The user enumerates all of the possible values, which
are symbolic constants

Design Issue: Should a symbolic constant be allowed to
be in more than one type definition?

Examples:

= Pascal — cannot reuse constants; ETs can be used for array

subscripts, for variables, case selectors; no input or output;
can be compared

= Ada — constants can be reused (overloaded literals); can be
used as in Pascal; input and output supported

= C and C++ — like Pascal, except they can be input and output
as integers

= Java does not include an enumeration type

B Chapter 6: Data Types ® 16

Subrange Types

= An ordered, contiguous subsequence of another
ordinal type

= Design Issue: How can they be used?
= Examples:

= Pascal—subrange types behave as their parent types;
can be used as for variables and array indices

type pos = 0 .. MAXINT;

= Ada—subtypes are not new types, just constrained

existing types (so they are compatible); can be used as
In Pascal, plus case constants

subtype Pos_Type 1s

Integer range 0O ..Integer'lLast;
B Chapter 6: Data Types ® 17

Evaluation of Ordinal Types

= Aid readability and writeability

= Improve reliability — restricted ranges add
error detection abilitly

= |mplementation of user-defined ordinal types:

= Enumeration types are implemented as
Integers

= Subrange types are the parent types; code
may be inserted (by the compiler) to restrict
assignments to subrange variables

B Chapter 6: Data Types ®

18

Arrays

= An array Is an aggregate of homogeneous
data elements in which an individual element
IS Identified by its position

= Design Issues:

What types are legal for subscripts?

Are subscript values range checked?

When are subscript ranges bound?

When does allocation take place?

What is the maximum number of subscripts?
Can array objects be initialized?

Are any kind of slices allowed?

B Chapter 6: Data Types ®

19

Array Indexing

= Indexing is a mapping from indices to elements
= Syntax

= FORTRAN, PL/I, Ada use parentheses
= Most others use brackets

B Chapter 6: Data Types ® 20

Array Subscript Types

What type(s) are allowed for defining array
subscripts?

FORTRAN, C — Int only

Pascal — any ordinal type
» Int, boolean, char, enum

Ada — int or enum
= including boolean and char

Java — integer types only

B Chapter 6: Data Types ®

21

Four Categories of Arrays

= Four categories, based on
subscript binding and storage binding:

» Static)

on the runtime stack

= Stack-dynamic
_

= Heap-dynamic

B Chapter 6: Data Types ® 22

Static Arrays

Range of subscripts and storage bindings are static
= Range : compile time
= Storage : initial program load time

Examples: FORTRAN 77, global arrays in C++, Static
arrays (C/C++), some arrays in Ada

Advantage:
= Execution efficiency
= no need for explicit allocation / deallocation

Disadvantages:
= Size must be known at compile time
= Bindings are fixed for entire program

B Chapter 6: Data Types ® 23

Fixed Stack-Dynamic Arrays

Range of subscripts is statically bound, but
storage Is bound at elaboration time

Examples:
= Pascal locals, C/C++ locals
= Think: C/C++ arrays declared in callable procedures

Advantages:
= Space efficiency
= Supports recursion

Disadvantage:
= Must know size at compile time

B Chapter 6: Data Types ®

24

Stack-Dynamic Arrays

Range and storage are dynamic, but fixed for
the remainder of the time its defining procedure
IS active

Examples: Ada locals in a procedure or block
and having range specified by a variable

= List : array (1..X) of integer

Advantage:
= Flexibility — size need not be known until the
array Is about to be used
Disadvantage:
= Once created, array size Is fixed

B Chapter 6: Data Types ® 25

Heap-Dynamic Arrays

Subscript range and storage bindings are
dynamic and and can change at any time

Examples: FORTRAN 90, Ada, APL, Perl
= List : array [*] of integer

= List = (1, 2, 3, 4)

- List = (1, 5, 6, 10, 19, 4 , 7, 8)
Advantage:

= Ultimate In flexibility

Disadvantages:
= More space (may be) required
= Run-time overhead

B Chapter 6: Data Types ®

26

Summary: Array Bindings

o Binding times for Array

subscript range storage
static: compile time compile time
fixed stack dynamic: compile time decl. elaboration
time
stack dynamic: runtime, but fixed thereafter
dynamic: runtime runtime

B Chapter 6: Data Types ® 27

Number of Array Subscripts

FORTRAN I allowed up to three
FORTRAN 77 allows up to seven

Some languages have no limits

Others allow just one,
but elements themselves can be arrays

B Chapter 6: Data Types ®

28

Array Initialization

List of values put in array in the order in which the
array elements are stored in memory

Examples:
= FORTRAN—uses the DATA statement, or
= put the values in / ... / on the declaration

C and C++ — put the values in braces at declaration
= |ets compiler count them (int stuff [] = {2, 4, 6, 8};)

Ada — positions for the values can be specified:
SCORE : array (1..14, 1..2) :=
(1 = (24, 10), 2 => (10, 7),
3 =>(12, 30), others => (0, 0));

Pascal and Modula-2 do not allow array initialization
B Chapter 6: Data Types ® 29

Array Operations

= APL

= Reverse elements in vector

= Reverse rows or columns

= Transpose (switch rows and colums), invert elements
= multiply or compute vector “dot product”

= Ada
= |n assig
= RHS can be an aggregate, array name, or slice
= LHS can also be a slice
= Catenation for single-dimensioned arrays

= Equality/inequality operators (= and /=)

NnMmMant
 HIERAYI RN

B Chapter 6: Data Types ® 30

Array Slices

= A slice Is some substructure of an array
= nothing more than a referencing mechanism

= Slice Examples:
= FORTRAN 90
INTEGER MAT (1 : 4, 1 : 4)
MAT(1 : 4, 1)

The first coilumn (rows 1 — 4 of column 1)
MAT(2, 1 : 4)
The second row (2" row of columns 1 — 4)

= Ada — single-dimensioned array slice:
LIST(4..10) (elements 4-10)

B Chapter 6: Data Types ®

31

Implementation of Arrays

= Storage Is LINEAR =

= Row major: data elements T -

are stored in linear e —.——
memory by ROWS S

« C/C++, Ada

= Column major order: data
elements are stored In
linear memory by columns :
* FORTRAN RERIR

B Chapter 6: Data Types ® 32

Access Functions for Arrays

= Access function maps subscript expressions to a
address corresponding to intended position In
array

= Al array [15] of X

Compute location of afk]

(Addr of a[1]) + ((k-1) * size of (X))

B Chapter 6: Data Types ® 33

Access Functions for Arrays

= A: array [8,9] of X
= Location of a[i,j] assuming row major storage

= (Addr of a[1,1]) +
(((number of rows above it row) * (size of row)) +
(number of elements to left of j*" column)) * size of (X)

= (Addr of a[1,1]) + (((1-1) * 9) + (j-1)) * size of (X)

= A: array [8,9] of X
= Location of a[i,j] assuming column major storage

= (Addr of a[1,1]) +
(((number of columns to left of j*" column) * (size of col)) +
(number of elements above i row)) * size of (X)

= (Addr of a[1,1]) + (((j-1) * 8) + (i-1)) * size of (X)

B Chapter 6: Data Types ® 34

Associative Arrays

= An associative array is an unordered collection
of data elements that are indexed by an equal
number of values called keys

= (key, data element) pair

= Design Issues:

» What Is the form of references to elements?
= |s the size static or dynamic?

B Chapter 6: Data Types ® 35

Perl Associative Arrays
(Hashes)

Names begin with %

Literals are delimited by parentheses
%h1_temps = ("Monday" => 77,

"Tuesday" => 79,..);

Subscripting i1s done using braces and keys
$hi_temps{'"Wednesday"} = 83;

Elements can be removed with delete
delete $hi_temps{"Tuesday"};

Records

= A record is a possibly heterogeneous
aggregate of data elements in which the
Individual elements are identified by hames

= Design Issues:
= What is the form of references?
= What unit operations are defined?

B Chapter 6: Data Types ®

37

Record Definition Syntax

= COBOL uses level numbers to show nested
records; others use recursive definitions

In C: In Ada:

typedef struct { type MyRecord 1s record
int fieldl; fieldl : Integer;
float field2; field2 : Float;

} MyRecord; end record;

B Chapter 6: Data Types ® 38

Record Field References

COBOL:

field_name OF record_name_1 OF
OF record_name_n
Others (dot notation):
record_name_1l.record_name_2.
.record_name_n.field_name

Fully qualified references must include all record
names

Elliptical references allow leaving out record names
as long as the reference is unambiguous

Pascal and Modula-2 provide a with clause to
abbreviate references

B Chapter 6: Data Types ® 39

Record Operations

Assignment

= Pascal, Ada, and C++ allow it if the types are
identical

Initialization
= Allowed in Ada, using an aggregate

Comparison
= In Ada, = and /=; one operand can be an aggregate

MOVE CORRESPONDING

= |n COBOL - it moves all fields in the source record to
fields with the same names in the destination record

B Chapter 6: Data Types ® 40

Unions

= A union is a type whose variables are
allowed to store different types of values at
different times during execution

= Design Issues for unions:

= What kind of type checking, if any, must be
done?

= Should unions be integrated with records?

B Chapter 6: Data Types ® 41

Union Example

» discriminated union
= tag stores type of current value

= e.d., Pascal variant record
type rec =
record
case flag : bool of
true : (X : integer,;
y : char);
false : (z : real)
end

var ex : rec;
ex.flag := true;
ex.x :=5

B Chapter 6: Data Types ®

42

Type Checking Issues

o System must check value of flag before each
variable access

ex.flag := true;

type rec =

ex.x := 10; record
case flag : bool of
print(ex.z); -- error true : (X : integer;
y : char);
« Still not good enough! false : (z : real)

ex.flag := true; end
ex.X := 5;
ex.y :='a’;
ex.flag := false;
print (ex.z); -- this should be an error, but how to check

e Problem is that USER can set tag independently

B Chapter 6: Data Types ® 43

Free Unions

Pascal Declaration
type rec = record
case bool of
true : . ..
false : . ..
end

O variable Is required

an
“w

No storage for tag, so union is inherently unsafe.

So Pascal's union type Is insecure in at least two ways.

C/C++ have free unions (No tags)

B Chapter 6: Data Types ®

44

Ada Union Types

o Similar to Pascal, except

- No free union
-Tag MUST be specified with union declaration

- When tag is changed, all appropriate fields must be
set too.

ex := (flag == false,

z =>1.5)

o SO0 Ada union types are safe.

- Ada systems required to check the tag of all
references to variants

B Chapter 6: Data Types ®

45

Algol 68 Union Ty

'Y | s 1 1IJ1 |} L ™~

« Declaration but need conformity clause

. L to access value
union (int, real) irl, ir2

real x;
Can assign either type . int count:
irl .= 5;
count :=irl; -- illegal
irl := 3.4,
caseirlin

(int1) : count :=1i;
(realr) : x:=r;

esac

B Chapter 6: Data Types ® 46

Union Type-Checking

= Problem with Pascal’s design:
= Type checking is ineffective

= User can create inconsistent unions (because the tag
can be individually assigned)

= Also, the tag is optional (Free Union)!

= Ada Discriminated |

= Tag must be present

= All assignments to the union must include the tag
value — tag cannot be assigned by itself

= It is impossible for the user to create an inconsistent
union

nion

vlll

B Chapter 6: Data Types ® 47

Evaluation of Unions

= Useful
= Potentially unsafe in most languages

= Ada, Algol 68 provide safe versions

B Chapter 6: Data Types ®

48

Pointers

= A pointer type is a type in which the range
of values consists of memory addresses and a
special value, nil (or null)

» Uses:

= Addressing flexibility
= Dynamic storage management

B Chapter 6: Data Types ®

49

Pointer Design Issues

What is the scope and lifetime of pointer
variables?

What is the lifetime of heap-dynamic variables?

Are pointers restricted to pointing at a
particular type?

Are pointers used for dynamic storage
management, indirect addressing, or both?

Should a language support pointer types,
reference types, or both?

B Chapter 6: Data Types ® 50

Pointers

« Should be able to point to only one type of
object

« Dereferencing
- explicit
- implicit

« Used for

- dynamic vars only

- any kind of variable

B Chapter 6: Data Types ®

51

Dangling Reference

o Pointer to variable that has been deallocated.
C:

Pascal:

var p,q : "cell;
begin
new(p);
q:-=0n,
dispose(p);

-- g Is a dangling ref.

iInt *p;

int funl(); {
Int X;
p = &X;

¥
main () {
funl ();

}

-- *p is a dangling ref.

B Chapter 6: Data Types ®

52

= Tombstones
= Pointers can't point directly to a dynamic variable

without tombstone:

pl — dynamic
| svariable
p2
with tombstone: extra level of indirection called a tombstone.
1 tombstone dyn var
p \\’ (0] >
p2 — —=

Safe, but add space and time overhead

B Chapter 6: Data Types ®

Preventing Dangling References

= Locks and Keys

= Additional information stored with pointers
and dynamic variables:

= pointer = (key, address)
= dynamic variable = (lock, var)

= A pointer can only access a dynamic variable
If Its key matches the lock.

= When a dynamic variable Is deallocated, its
lock Is changed.

= Again, space and time overhead.

B Chapter 6: Data Types ®

54

Garbage: Memory Leaks

= An object is garbage If it Is stored In an
Inaccessible memory address.

= Pascal:

var p,g :
begin

cell;

new(p);
new(q);

p-=0d;

-- assuming no dispose or reassign

= original p™'s storage is now garbage
= Wasteful, but not dangerous.

B Chapter 6: Data Types ®

95

Aliasing

When two pointers refer to the same address
Pointers need not be in the same program unit

Changes made through one pointer affect the
behavior of code referencing the other pointer

When unintended, may cause unpredictability,
loss of locality of reasoning

B Chapter 6: Data Types ®

56

Pointer Examples

= Pascal: used for dynamic storage management
only

= Explicit dereferencing

= Dangling pointers and memory leaks are
possible

= Ada: a little better than Pascal
= Implicit dereferencing
= All pointers are Initialized to null

= Similar dangling pointer and memory leak
problems for typical implementations

B Chapter 6: Data Types ®

Y

Pointer Examples (cont.)

= C and C++: for both dynamic storage
management and addressing

= Explicit dereferencing and address-of operator
= Can do address arithmetic in restricted forms
= Domain type need not be fixed (void *)

= FOR
= Can point to heap and non-heap variables

= Implicit dereferencing

= Special assignment operator for non-dereferenced
references

B Chapter 6: Data Types ®

58

Evaluation of Pointers

= Dangling pointers and dangling objects are
oroblems, as is heap management

= Pointers are like goto's—they widen the range of
cells that can be accessed by a variable, but also
complicate reasoning and open up new problems

= Pointers services are necessary—so we can't
design a language without them

B Chapter 6: Data Types ® 59

Heap Manaaoement

B R v

= Allocation
= Maintain a free list of available memory cells

= Deallocation (Reclamation)
= method 1: Reference Counting

When reference count = 0 => deallocate cell.
Advantage:
= cost is distributed over time

Disadvantages:
= space/time overhead in maintaining reference counts
= won't collect circular structures

B Chapter 6: Data Types ®

Each cell has a tag with # of pointers to that cell.

60

= Method 2a: Garbage Collection with mark-and-sweep
= Each cell has a mark bit.

= Mark and Sweep:
= set all mark bits to "garbage"

= for each pointer into the heap, mark all reachable cells "not
garbage"

= |ook at each cell in memory; if marked "garbage," reclaim.
= Advantages:

= reclaims all garbage

= [ittle space/no time overhead auring normal execution
= Disadvantages:

= must stop execution to garbage collect

= fragmentation

= time ~— memory size

B Chapter 6: Data Types ®

61

Heap Management

= Method 2b: Garbage Collection with copying

= Start with two heaps of same size
= working heap + other heap

= Copying:
= allocate new cells in working heap
= when working heap is full,

= for each pointer into working heap, copy all reachable cells into
other heap.

= other heap is new working heap, working heap is new other heap

= Advantages:

= pboth advantages of mark & sweep (reclaims all garbage, little space/no
time overhead during normal execution)

= time ~ used cells, not total memory size
= automatic compaction (ameliorates fragmentation)

= Disadvantages
= stopping to copy still a problem

= need twice as much memory for heap => only practical with virtual
memory systems

B Chapter 6: Data Types ®

62

Heap Management

= This is all much easier for fixed-size
allocate/deallocate than for variable-size:

= Fixed size (& format) Lisp
= Know where pointers are within cells
= Fragmentation not a problem

= Variable size (& format)
= Need header for each object in memory telling:
= its size
= where it may contain pointers to other objects
= Fragmentation is a problem--need compaction

B Chapter 6: Data Types ®

63

