
1

Syntax

In Text: Chapter 3

 Chapter 3: Syntax and Semantics 2

Outline

Syntax:
Recognizer vs. generator
BNF
EBNF

 Chapter 3: Syntax and Semantics 3

Basic Definitions

Syntax—the form or structure of the
expressions, statements, and program units
Semantics—the meaning of the expressions,
statements, and program units

Why write a language definition; who will
use it?

Other language designers
Implementors (compiler writers)
Programmers (the users of the language)

 Chapter 3: Syntax and Semantics 4

What is a “Language”?

A sentence is a string of characters over
some alphabet
A language is a set of sentences
A lexeme is the lowest level syntactic unit of
a language (e.g., *, sum, begin)
A token is a category of lexemes (e.g.,
identifier)

 Chapter 3: Syntax and Semantics 5

Recognizers vs. Generators
We don’t want to use English to describe a
language (too long, tedious, imprecise), so
…
There are two formal approaches to
describing syntax:

Recognizers
Given a string, a recognizer for a language L tells
whether or not the string is in L (ex: Compiler)

Generators
A generator for L will produce an arbitrary string in L on
demand. (ex: Grammar, BNF)

Recognition and generation are useful for
different things, but are closely related

 Chapter 3: Syntax and Semantics 6

Grammars

Developed by Noam Chomsky in the mid-
1950s
4-level hierarchy (0-3)
Language generators, meant to describe
the syntax of natural languages
Context-free grammars define a class of
languages called context-free languages
(level 2)

 Chapter 3: Syntax and Semantics 7

Backus-Naur Form

Invented by John Backus and Peter Naur to
describe syntax of Algol 58/60
BNF is equivalent to context-free grammars
A metalanguage: a language used to
describe another language

 Chapter 3: Syntax and Semantics 8

BNF Nonterminals

In BNF, abstractions are used to represent
classes of syntactic structures—they act like
syntactic variables (also called nonterminal
symbols)

<while_stmt> -> while <logic_expr> do <stmt>

This is a rule; it describes the structure of a
while
 statement

 Chapter 3: Syntax and Semantics 9

BNF Rules
A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of terminal and nonterminal
symbols
A grammar is a finite nonempty set of rules
An abstraction (or nonterminal symbol) can have
more than one RHS:

 <stmt> -> <single_stmt>
 | begin <stmt_list> end

Syntactic lists are described using recursion:

 <ident_list> -> ident
 | ident, <ident_list>

 Chapter 3: Syntax and Semantics 10

An Example Grammar
<program> -> <stmts>
<stmts> -> <stmt>
 | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term>
 | <term> - <term>
<term> -> <var>
 | const

 Chapter 3: Syntax and Semantics 11

Derivations

A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols):
<program> => <stmts>
 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

 Chapter 3: Syntax and Semantics 12

Sentential Forms
Every string of symbols in the derivation is a
sentential form
A sentence is a sentential form that has only
terminal symbols
A leftmost derivation is one in which the
leftmost nonterminal in each sentential
form is the one that is expanded next in the
derivation
A rightmost derivation works right to left
instead
Some derivations are neither leftmost nor
rightmost

 Chapter 3: Syntax and Semantics 13

Parse Trees
A parse tree is a
hierarchical
representation of a
derivation
A grammar is
ambiguous iff it
generates a sentential
form that has two or
more distinct parse
trees

 <program>

 <stmts>

 <stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b

 Chapter 3: Syntax and Semantics 14

Ambigous Grammars

An ambiguous expression grammar:
<expr> -> <expr> <op> <expr> | const
<op> -> / | -

 <expr> <expr>

<expr> <op> <expr> <expr> <op> <expr>

<expr><op><expr> <expr><op><expr>

const - const / const const - const / const

 Chapter 3: Syntax and Semantics 15

Indicating Precedence

If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity:

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | cons

 <expr>

 <expr> - <term>

 <term> <term> / const

 const const

<expr> => <expr> - <term>
 => <term> - <term>
 => const - <term>
 => const - <term> / const
 => const - const / const

 Chapter 3: Syntax and Semantics 16

Operator Associativity

Operator associativity can also be indicated
by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

 <expr>

 <expr> + const

 <expr> + const

 const

 Chapter 3: Syntax and Semantics 17

Extended BNF (EBNF)

Optional parts are placed in brackets ([])
 <proc_call> -> ident [(<expr_list>)]

Put alternative parts of RHS in parentheses
and separate them with vertical bars

 <term> -> <term> (+ | -) const

Put repetitions (0 or more) in braces ({})
 <ident> -> letter {letter | digit}

 Chapter 3: Syntax and Semantics 18

BNF and EBNF Side by Side

BNF:
 <expr> -> <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> -> <term> * <factor>
 | <term> / <factor>
 | <factor>

EBNF:
 <expr> -> <term> {(+ | -) <term>}
 <term> -> <factor> {(* | /) <factor>

 Chapter 3: Syntax and Semantics 19

Recursive Descent Parsing
Parsing is the process of tracing or constructing a parse tree
for a given input string
Parsers usually do not analyze lexemes; that is done by a
lexical analyzer, which is called by the parser
A recursive descent parser traces out a parse tree in top-
down order; it is a top-down parser
Each nonterminal in the grammar has a subprogram
associated with it; the subprogram parses all sentential forms
that the nonterminal can generate
The recursive descent parsing subprograms are built directly
from the grammar rules
Recursive descent parsers, like other top-down parsers,
cannot be built from left-recursive grammars

 Chapter 3: Syntax and Semantics 20

Recursive Descent Example
Example: For the grammar:
 <term> -> <factor> {(* | /) <factor>}
Simple recursive descent parsing subprogram:

void term() {
 factor(); /* parse the first factor*/
 while (next_token == ast_code ||
 next_token == slash_code) {
 lexical(); /* get next token */
 factor(); /* parse the next factor */
 }
}

