
1

Implementing
Subprograms

In Text: Chapter 9

 Chapter 9: Implementing Subprograms 2

Outline

Activation records
Accessing locals
Accessing nonlocals (static scoping)

Static chains
Displays

Implementing blocks
Accessing nonlocals with dynamic scoping

 Chapter 9: Implementing Subprograms 3

Implementing Subprograms

The subprogram call and return operations
of a language are together called its
subprogram linkage
First, let’s look at implementing FORTRAN 77
subprograms

 Chapter 9: Implementing Subprograms 4

Implementing FORTRAN 77 Subprogs

Call Semantics:
Save the execution status of the caller
Carry out the parameter-passing process
Pass the return address
Transfer control to the callee

Return Semantics:
If pass-by-value-result is used, move current values of
parameters to their corresponding actuals
If it is a function, move return value to a place the caller
can get it
Restore the execution status of the caller
Transfer control back to the caller

Required Storage:
Status information of the caller, parameters, return
address, and functional value (if it is a function)

 Chapter 9: Implementing Subprograms 5

FORTRAN Activation Info
can allocate all memory statically

 main
 ...
 f (...)
 ...
 proc f (...)
 ...
 g (...)
 ...
 proc g()
 ...
 g (...) -- !!!

locals

params

locals

ret add

params

locals

ret add

Common

Main

f

g

}

}

 Chapter 9: Implementing Subprograms 6

Activation Records
The format, or layout, of the noncode part of an
executing subprogram is called an activation
record (AR)
An activation record instance (ARI) is a concrete
example of an activation record (the collection of
data for a particular subprogram activation)
FORTRAN 77 subprograms can have no more than
one activation record instance at any given time
The code of all of the program units of a FORTRAN 77
program may reside together in memory, with the
data for all units stored together elsewhere
The alternative is to store all local subprogram data
with the subprogram code

 Chapter 9: Implementing Subprograms 7

Implementing Subprograms in
ALGOL-like Languages

More complicated than FORTRAN 77:
Parameters are often passed by two methods
Local variables are often dynamically allocated
Recursion must be supported
Static scoping must be supported

 Chapter 9: Implementing Subprograms 8

Activation Record Structure

A typical activation record for an ALGOL-like
language:

 Local variables

 Parameters
 Dynamic link

 Static link stack top
 Return address

 Chapter 9: Implementing Subprograms 9

Activation Record Details
The activation record format is static, but its
size may be dynamic
The static link points to the bottom of the
activation record instance of an activation
of the static parent (used for access to
nonlocal vars)
The dynamic link points to the bottom of an
instance of the activation record of the
caller
An activation record instance is dynamically
created when a subprogram is called

 Chapter 9: Implementing Subprograms 10

Example Factorial Program
 program p;
 var v : int;
 function fac(n: int): int;
 begin
 if n <= 1 then
 fac := 1
 else
 fac := n * fac(n - 1);
 end;
 begin
 v := fac(3);
 print(v);
 end.

AR
for
fac

p

ret addr

dynamic link

n = 3

ret value = ?

ret addr

dynamic link

v = ?

ret addr

dynamic link

n = 2

ret value = ?

ret addr

dynamic link

n = 1

ret value = 1

 Chapter 9: Implementing Subprograms 11

The Dynamic Chain
The collection of dynamic links in the stack at a
given time is called the dynamic chain, or call chain
Local variables can be accessed by their offset from
the beginning of the activation record. This offset is
called the local_offset
The local_offset of a local variable can be
determined by the compiler:

Assuming all stack positions are the same size,
the first local variable declared has an offset of
three plus the number of parameters

The activation record used in the previous example
supports recursion

 Chapter 9: Implementing Subprograms 12

Accessing Nonlocal References

Two situations:
Static scoping

Static chains
Displays

Dynamic scoping

 Chapter 9: Implementing Subprograms 13

Nonlocal Refs: Static Scoping
All accessible nonlocal variables reside in
some ARI on the stack
The process of locating a nonlocal
reference:

Find the correct ARI
Determine the correct offset within that ARI

Finding the offset is easy! It is statically
determined
Finding the correct ARI:

Static semantic rules guarantee that all nonlocal
variables that can be referenced have been
allocated in some ARI that is on the stack when
the reference is made

 Chapter 9: Implementing Subprograms 14

Technique 1: Static Chains
A static chain is a chain of static links that connects
certain ARIs
The static link in an ARI for subprogram A points to
one of the ARIs of A's static parent
The static chain from an ARI connects it to all of its
static ancestors
To find the declaration for a reference to a nonlocal
variable:

The compiler can easily determine how many levels of
scope separate the current subprogram from the definition
Just walk the static chain the correct number of steps

Static_depth is an integer associated with a static
scope whose value is the depth of nesting of that
scope

 Chapter 9: Implementing Subprograms 15

Static Depth and Chain Offset
 main ----- static_depth = 0
 A ----- static_depth = 1
 B ----- static_depth = 2

 C ----- static_depth = 1

The chain_offset or nesting_depth of a nonlocal
reference is the difference between the
static_depth of the reference and that of the scope
where it is declared
A reference can be represented by the pair:

 (chain_offset, local_offset)

 Chapter 9: Implementing Subprograms 16

Call sequence for MAIN_2:
 MAIN_2 calls BIGSUB
 BIGSUB calls SUB2
 SUB2 calls SUB3
 SUB3 calls SUB1

program MAIN_2;
 var X : integer;
 procedure BIGSUB;
 var A, B, C : integer;
 procedure SUB1;
 var A, D : integer;
 begin { SUB1 }
 A := B + C; <----------1
 end; { SUB1 }
 procedure SUB2(X : integer);
 var B, E : integer;
 procedure SUB3;
 var C, E : integer;
 begin { SUB3 }
 SUB1;
 E := B + A: <------2
 end; { SUB3 }
 begin { SUB2 }
 SUB3;
 A := D + E; <----------3
 end; { SUB2 }
 begin { BIGSUB }
 SUB2(7);
 end; { BIGSUB }
begin
 BIGSUB;
end. { MAIN_2 }

Static Chain Example

BIGSUB

MAIN_2

C

dynamic link

ret addr
static link

A
B

dynamic link

ret addr
static link

X = ?

 Chapter 9: Implementing Subprograms 17

Static Chain Maintenance
At the call (assume there are no parameters that
are subprograms and no pass-by-name
parameters):

The activation record instance must be built
The dynamic link is just the old frame pointer
The static link must point to the most recent ARI of the
static parent (in most situations)

Best method:
If A calls B, then B's static link should be set to the ARI that is
(static_depth(A) – static_deptb(B) + 1) links along the static
chain starting at A
Amounts to treating subprogram calls and definitions like
variable references and definitions, and then using the
chain_offset
This info can be computed statically by the compiler

 Chapter 9: Implementing Subprograms 18

Evaluation of Static Chains

Problems:
A nonlocal reference is slower if the number of
scopes between the reference and the
declaration of the referenced variable is large
Time-critical code is difficult, because the costs of
nonlocal references are not equal, and can
change with code upgrades

 Chapter 9: Implementing Subprograms 19

Technique 2 - Displays

The idea: Put the static links in a separate
stack called a display
The entries in the display are pointers to the
ARIs that have the variables in the
referencing environment
Represent references as

 (display_offset, local_offset)
 Where display_offset is the same as
chain_offset
Advantage: constant-time nonlocal access

 Chapter 9: Implementing Subprograms 20

Mechanics of Display References
Use the display_offset to get the pointer into the display to the
ARI with the variable
Use the local_offset to get to the variable within the ARI
Display maintenance (assuming no parameters that are
subprograms and no pass-by-name parameters):

Display_offset depends only on the static_depth of the
procedure whose ARI is being built: It is exactly the
static_depth of the procedure
There are k+1 entries in the display, where k is the static
depth of the currently executing unit (k=0 is for the main
program)
For a call to procedure P with a static_depth of k:

Save a copy of the display pointer at position k in new ARI
Put the link to the new ARI for P at position k in the display
On return, move the saved display pointer from the ARI back
into the display at position k

 Chapter 9: Implementing Subprograms 21

Static Chain vs. Display
References to locals

Not much difference
References to nonlocals

If it is one level away, they are equal
If it is farther away, the display is faster
Display is better for time-critical code, because all
nonlocal references cost the same

Procedure calls
Speed is about the same
Display uses more memory

Procedure returns
Both have fixed time, but the static chain is slightly faster

Overall: Static chain is better, unless the display can
be kept in registers

 Chapter 9: Implementing Subprograms 22

Implementing Blocks

Two Methods:
Treat blocks as parameterless
subprograms and give them activation
records
Allocate locals on top of the ARI of the
subprogram
Must use a different method to access
locals (e.g., frame pointer)

 Chapter 9: Implementing Subprograms 23

Implementing Dynamic Scoping

Deep Access
Nonlocal references are found by searching the
activation record instances on the dynamic chain
Length of chain cannot be statically determined
Every activation record instance must have
variable names

Shallow Access
Put locals in a central place
Methods:

One stack for each variable name
Central table with an entry for each variable name

 Chapter 9: Implementing Subprograms 24

Subprograms as Parameters

For deep binding:
Static chain

Compiler simply passes the link to the static parent of
the parameter, along with the parameter

Display
All pointers to static ancestors must be saved, because
none are necessarily in the environment of the
parameter
In many implementations, the whole display is saved for
calls that pass subprogram parameters

