Implementing
Subprograms

In Text: Chapter 9



Outline

N
m Activation records

B Accessing locals

B Accessing nonlocals (static scoping)
m Static chains
m Displays
B Implementing blocks
B Accessing nonlocals with dynamic scoping

B Chapter 9: Implementing Subprograms & 2



Implementing Subprograms

B The subprogram call and return operations
of a language are together called its
subprogram linkage

B First, let’s look at implementing FORTRAN 77
subprograms

B Chapter 9: Implementing Subprograms & 3



Implementing FORTRAN 77 Subprogs

m Call Semantics:

B Save the execution status of the caller

B Carry out the parameter-passing process
B Pass the return address

B Transfer control to the callee

B Return Semantics:

m If pass-by-value-result is used, move current values of
parameters to their corresponding actuals

m If itis afunction, move return value to a place the caller
can get it

B Restore the execution status of the caller

B Transfer control back to the caller

B Required Storage:

m Status information of the caller, parameters, return
address, and functional value (if it is a function)

B Chapter 9: Implementing Subprograms & 4



FORTRAN Activation Info

m can allocate all memory statically

main

}Common

"f ..) locals | }main

params \
procf(...) locals f

9. ret add /

params \

locals g

ret add /

B Chapter 9: Implementing Subprograms & 5

procg()

...g (..) --1



Activation Records

B The format, or layout, of the noncode part of an
executing subprogram is called an activation
record (AR)

B An activation record instance (ARIl) is a concrete
example of an activation record (the collection of
data for a particular subprogram activation)

B FORTRAN 77 subprograms can have no more than
one activation record instance at any given time

B The code of all of the program units of a FORTRAN 77
program may reside together in memory, with the
data for all units stored together elsewhere

B The alternative is to store all local subprogram data
with the subprogram code

B Chapter 9: Implementing Subprograms & 6



Implementing Subprograms in
ALGOL-like Languages

B More complicated than FORTRAN 77:
B Parameters are often passed by two methods
m | ocal variables are often dynamically allocated
B Recursion must be supported
B Static scoping must be supported

B Chapter 9: Implementing Subprograms & 7



Activation Record Structure

B A typical activation record for an ALGOL-like
language:

L ocal variables

Parameters

Dynamic link

Static link stack top

Return address

B Chapter 9: Implementing Subprograms & 8



Activation Record Detalls

B The activation record format is static, but its
size may be dynamic

B The static link points to the bottom of the
activation record instance of an activation
of the static parent (used for access to
nonlocal vars)

B The dynamic link points to the bottom of an
Instance of the activation record of the
caller

B An activation record instance is dynamically
created when a subprogram is called

B Chapter 9: Implementing Subprograms & 9



program p;
var v :int;
function fac(n: int): int;
begin
if n <=1 then
fac:=1
else
fac:=n * fac(n - 1);
end;
begin
v :=fac(3);
print(v);
end.

ret value = 1

n=1

dynamic link

ret addr

ret value =?

n=2

dynamic link

ret addr

ret value =?

n=3

dynamic link

ret addr

v="

dynamic link

v

>

ret addr

B Chapter 9: Implementing Subprograms &

Example Factorial Program

AR
for
fac

10



The Dynamic Chain

The collection of dynamic links in the stack at a
given time is called the dynamic chain, or call chain

B Local variables can be accessed by their offset from
the beginning of the activation record. This offset Is
called the local offset

B The local offset of a local variable can be
determined by the compiler:

m Assuming all stack positions are the same size,
the first local variable declared has an offset of
three plus the number of parameters

B The activation record used Iin the previous example
supports recursion

B Chapter 9: Implementing Subprograms & 11



Accessing Nonlocal References

B Two situations:

B Static scoping
mStatic chains
mDisplays

B Dynamic scoping

B Chapter 9: Implementing Subprograms & 12



Nonlocal Refs: Static Scoping

B All accessible nonlocal variables reside In
some ARI on the stack

B The process of locating a nonlocal
reference:
B Find the correct ARI
B Determine the correct offset within that ARI

B Finding the offset is easy! It is statically
determined

B Finding the correct ARI.

B Static semantic rules guarantee that all nonlocal
variables that can be referenced have been
allocated in some ARI that is on the stack when
the reference is made

B Chapter 9: Implementing Subprograms & 13




Technique 1: Static Chains

A static chain is a chain of static links that connects
certain ARIs

B The static link in an ARI for subprogram A points to
one of the ARIs of A's static parent

B The static chain from an ARl connects it to all of its
static ancestors

B To find the declaration for a reference to a nonlocal
variable:

B The compiler can easily determine how many levels of
scope separate the current subprogram from the definition

m Just walk the static chain the correct number of steps

B Static_depth is an integer associated with a static
scope whose value is the depth of nesting of that
scope

B Chapter 9: Implementing Subprograms & 14



Static Depth and Chain Offset

main ----- static_depth =0
A ————- static depth =1
B---——- static depth =2
| C ————- static_depth =1

B The chain_offset or nesting_depth of a nonlocal
reference is the difference between the
static_depth of the reference and that of the scope
where it is declared

B Areference can be represented by the pair:
(chain_offset, local offset)

B Chapter 9: Implementing Subprograms & 15



Static Chain Example

I ———
program MAIN_2;

B cedure S1GSUB: Call sequence for MAIN_2:
var A, B, C : integer;
procedure SUBL; L] MA'N_Z calls BIGSUB

var A, D : integer,;

L — s ® BIGSUB calls SUB2
end; {SUB1}
procedure SUB2(X : integer); B SUB2 calls SUB3
var B, E : integer;
procedure SUB3;
VarC.E- nteger: m SUB3 calls SUB1
begin { SUB3 }
SUBJZ,
E=B+A <—————- 2
end; { SUB3}
begin { SUB2 } C
SUB3; c \
A=D+E, <—————————- 3
: A
end; { SUB2 } .
begin { BIGSUB } dynamic link IGSUB
SUB2(7), static link
ben_ol;{BIGSUB} re)zzid'(?jr
egin = 7
BIGSUB; dynamic link
end. { MAIN_2} static Tnk /MAI N_2
[, I: ret addr
vy

B Chapter 9: Implementing Subprograms & 16



Static Chain Maintenance

B At the call (assume there are no parameters that
are subprograms and no pass-by-name

parameters):
B The activation record instance must be built
B The dynamic link is just the old frame pointer

B The static link must point to the most recent ARI of the
static parent (in most situations)

B Best method.:

m If A calls B, then B's static link should be set to the ARI that is
(static_depth(A) — static_deptb(B) + 1) links along the static
chain starting at A

B Amounts to treating subprogram calls and definitions like
variable references and definitions, and then using the
chain_offset

B This info can be computed statically by the compiler
B Chapter 9: Implementing Subprograms & 17




Evaluation of Static Chains

N
B Problems:

® A nonlocal reference is slower if the number of
scopes between the reference and the
declaration of the referenced variable is large

B Time-critical code is difficult, because the costs of
nonlocal references are not equal, and can
change with code upgrades

B Chapter 9: Implementing Subprograms & 18



Technigue 2 - Displays

B The idea: Put the static links In a separate
stack called a display

B The entries in the display are pointers to the
ARIs that have the variables in the
referencing environment

B Represent references as
(display_ offset, local offset)

B Where display offset is the same as
chain_offset

B Advantage: constant-time nonlocal access

B Chapter 9: Implementing Subprograms & 19



Mechanics of Display References

B Use the display offset to get the pointer into the display to the
ARI with the variable

B Use the local offset to get to the variable within the ARI

B Display maintenance (assuming no parameters that are
subprograms and no pass-by-name parameters):

B Display offset depends only on the static_depth of the
procedure whose ARl is being built: It is exactly the
static_depth of the procedure

B There are k+1 entries in the display, where k is the static
depth of the currently executing unit (k=0 is for the main
program)

B For acall to procedure P with a static_depth of k:

®m Save a copy of the display pointer at position k in new ARI

m Put the link to the new ARI for P at position k in the display

® On return, move the saved display pointer from the ARI back
into the display at position k

B Chapter 9: Implementing Subprograms & 20



Static Chain vs. Display

B References to locals
B Not much difference

B References to nonlocals
m Ifitis one level away, they are equal
m Ifitis farther away, the display is faster

m Display is better for time-critical code, because all
nonlocal references cost the same

B Procedure calls
B Speed is about the same
m Display uses more memory
B Procedure returns
B Both have fixed time, but the static chain is slightly faster

m Overall: Static chain is better, unless the display can
be kept in registers

B Chapter 9: Implementing Subprograms & 21




Implementing Blocks

N
B Two Methods:

B Treat blocks as parameterless
subprograms and give them activation
records

m Allocate locals on top of the ARI of the
subprogram

® Must use a different method to access
locals (e.g., frame pointer)

B Chapter 9: Implementing Subprograms & 22



Implementing Dynamic Scoping

B Deep Access

® Nonlocal references are found by searching the
activation record instances on the dynamic chain

®m Length of chain cannot be statically determined
m Every activation record instance must have
variable names
®m Shallow Access

®m Put locals in a central place

B Methods:

® One stack for each variable name
m Central table with an entry for each variable name

B Chapter 9: Implementing Subprograms & 23



Subprograms as Parameters

|
B For deep binding:

m Static chain
m Compiler simply passes the link to the static parent of
the parameter, along with the parameter
m Display
m All pointers to static ancestors must be saved, because

none are necessarily in the environment of the
parameter

® In many implementations, the whole display is saved for
calls that pass subprogram parameters

B Chapter 9: Implementing Subprograms & 24



