
1

Semantics

In Text: Chapter 3

 Chapter 3: Syntax and Semantics 2

Outline

Semantics:
Attribute grammars (static semantics)
Operational
Axiomatic
Denotational

 Chapter 3: Syntax and Semantics 3

Static Semantics
CFGs cannot describe all of the syntax of
programming languages—context-specific parts
are left out
Static semantics refers to type checking and
resolving declarations; has nothing to do with
“meaning” in the sense of run-time behavior
Often described using an attribute grammar (AG)
(Knuth, 1968)
Basic idea: add to CFG by carrying some semantic
information along inside parse tree nodes
 Primary value of AGs:

Static semantics specification
Compiler design (static semantics checking)

 Chapter 3: Syntax and Semantics 4

Dynamic Semantics

No single widely acceptable notation or
formalism for describing semantics
Three common approaches:

Operational
Axiomatic
Denotational

 Chapter 3: Syntax and Semantics 5

Operational Semantics
Gives a program's meaning in terms of its
implementation on a real or virtual machine
Change in the state of the machine (memory,
registers, etc.) defines the meaning of the
statement
To use operational semantics for a high-level
language, a virtual machine in needed
A pure hardware interpreter is too expensive
A pure software interpreter also has problems:

machine-dependent
Difficult to understand

A better alternative: A complete computer
simulation

 Chapter 3: Syntax and Semantics 6

Operational Semantics (cont.)

The process:
Identify a virtual machine (an idealized
computer)
Build a translator (translates source code to the
machine code of an idealized computer)
Build a simulator for the idealized computer

Operational semantics is sometimes called
translational semantics, if an existing PL is
used in place of the virtual machine

 Chapter 3: Syntax and Semantics 7

Operational Semantics Example

Operational semantics could be much lower level:
 mov i,r1
 mov y,r2
 jmpifless(r2,r1,out)
 ...
 out: ...

 i := x
loop: if i>y goto out
 . . .
 i := i + 1
 goto loop
out: . . .

for i := x to y do
 begin
 . . .
 end

Operational SemanticsPascal

 Chapter 3: Syntax and Semantics 8

Evaluation of Operational Semantics

Advantages:
May be simple, intuitive for small examples
Good if used informally
Useful for implementation

Disadvantages
Very complex for large programs
Lacks mathematical rigor

Uses:
Vienna Definition Language (VDL) used to define
PL/I (Wegner 1972)
Compiler work

 Chapter 3: Syntax and Semantics 9

Axiomatic Semantics
Based on formal logic (first order predicate calculus)

Original purpose: formal program verification

Approach: Define axioms or inference rules for each
statement type in the language

Such an inference rule allows one to transform expressions to
other expressions
The expressions are called assertions, and state the
relationships and constraints among variables that are true at
a specific point in execution

An assertion before a statement is called a precondition

An assertion following a statement is a postcondition

 Chapter 3: Syntax and Semantics 10

Weakest Preconditions

Pre-post form: {P} statement {Q}
A weakest precondition is the least
restrictive precondition that will guarantee
the postcondition
An example:

a := b + 1 {a > 1}

One possible precondition: {b > 10}
Weakest precondition: {b > 0 }

 Chapter 3: Syntax and Semantics 11

Program Proofs

Program proof process:
The postcondition for the whole program
is the desired results
Work back through the program to the
first statement
If the precondition on the first statement
is the same as the program spec, the
program is correct

 Chapter 3: Syntax and Semantics 12

An Axiom for Assignment
• An axiom for assignment statements:

{Qx->E} x := E {Q}

• Substitute E for every x in Q
{ P? } x := y+1 { x > 0 }

 P = x > 0 x -> y+1
 P = y+1 > 0
 P = y ≥ 0
• Basically, “undoing” the assignment and

solving for y

 Chapter 3: Syntax and Semantics 13

Some Inference Rules

The Rule of Consequence:

{P} S {Q}, P' => P, Q => Q'

{P'} S {Q'}

For a sequence S1;S2 the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}

{P1} S1; S2 {P3}

 Chapter 3: Syntax and Semantics 14

A Rule for Loops

An inference rule for logical pretest loops:

{P} while B do S end {Q}

The inference rule is:

{I and B} S {I}

{I} while B do S {I and (not B)}

Where I is the loop invariant.

 Chapter 3: Syntax and Semantics 15

Loop Invariant Characteristicss

I must meet the following conditions:
1. P ⇒ I (the loop invariant must be true initially)

2. {I} B {I} (evaluation of the Boolean must not
change the validity of I)

3. {I and B} S {I} (I is not changed by executing the
body of the loop)

4. (I and (not B)) ⇒ Q (if I is true and B is false, Q is
implied)

5. The loop terminates (can be difficult to prove)

 Chapter 3: Syntax and Semantics 16

More on Loop Invariants

The loop invariant I is:
A weakened version of the loop
postcondition, and
Also the loop’s precondition

I must be:
Weak enough to be satisfied prior to the
beginning of the loop, but
when combined with the loop exit
condition, it must be strong enough to
force the truth of the postcondition

 Chapter 3: Syntax and Semantics 17

Finding Loop Invariants
Work backwards through a few
iterations and look for a pattern

while y <> x do y:= y+1 {y = x}
 {P?} y := y + 1 {y = x}
P = {y = x}y -> y + 1 = {y = x – 1} —last

iteration
 {P?} y := y + 1 {y = x - 1}
P = {y = x-1}y -> y + 1 = {y = x – 2} —next to

last

 Chapter 3: Syntax and Semantics 18

Finding Invariants (cont.)
By extension, we get I = { y < x }
When we factor in that the loop may
not be executed even once (when y =
x), we get

I = { y ≤ x }
This also satisfies loop termination, so
P = I = {y ≤ x}

 Chapter 3: Syntax and Semantics 19

Is I a Loop Invariant?
Does {y ≤ x} satisfy the 5 conditions?

(1) {y ≤ x} ⇒ {y ≤ x} ?
(2) if {y ≤ x} and y <> x is then evaluated,

is {y ≤ x} still true?
(3) if {y ≤ x} and y <> x are true and then

y := y+1 is executed, is {y ≤ x} true?
(4) does {y ≤ x} and {y = x} ⇒ {y = x}?

Can you argue convincingly that the
program segment terminates?

 Chapter 3: Syntax and Semantics 20

A Harder Loop Invariant Example

{P} while y < x + 1 do y := y + 1 {y>5}
{y > 5}y -> y + 1 ⇒ y > 4
{y > 4}y -> y + 1 ⇒ y > 3

etc.
Tells us nothing about x because x is
not in Q ≡ {y > 5}
What else can we do?

 Chapter 3: Syntax and Semantics 21

Using Loop Criterion 4
Try guessing invariant using criterion
4:
{I and (not B)} ⇒ Q
I? and y ≥ x + 1 ⇒ y > 5
I? and y > x ⇒ y > 5
any x ≥ 5 satisfies implication
so . . . let I = {x ≥ 5}
Do the 4 Axioms hold?

 Chapter 3: Syntax and Semantics 22

Evaluation of Axiomatic Semantics

Advantages
Can be very abstract
May be useful in proofs of correctness
Solid theoretical foundations

Disadvantages
Predicate transformers are hard to define
Hard to give complete meaning
Does not suggest implementation

Uses of Axiomatic Semantics
Semantics of Pascal
Reasoning about correctness

 Chapter 3: Syntax and Semantics 23

Denotational Semantics

Based on recursive function theory
The most abstract semantics description
method
Originally developed by Scott and Strachey
(1970)
Key idea: Define a function that maps a
program (a syntactic object) to its meaning
(a semantic object)

 Chapter 3: Syntax and Semantics 24

Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:

Machine is gone
Language is mathematics (lamda calculus)

The difference between denotational and
operational semantics:

In operational semantics, the state changes are
defined by coded algorithms for a virtual
machine
In denotational semantics, they are defined by
rigorous mathematical functions

 Chapter 3: Syntax and Semantics 25

Denotational Specification Process

1. Define a mathematical object for each
language entity

2. Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

 Chapter 3: Syntax and Semantics 26

Program State
The meaning of language constructs are defined
only by the values of the program's variables
The state of a program is the values of all its current
variables, plus input and output state

s = {<i1, v1>, <i2, v2>, …, <in, vn>}

Let VARMAP be a function that, when given a
variable name and a state, returns the current
value of the variable:

VARMAP(ij, s) = vj

 Chapter 3: Syntax and Semantics 27

Example: Decimal Numbers

<digit> -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<dec_num> -> <digit> | <dec_num><digit>

Mdec('0') = 0, Mdec('1') = 1, …, Mdec('9') = 9
Mdec(<dec_num>) ∆=

 case <dec_num> of
 <digit> ⇒ Mdec(<digit>)
 <dec_num><digit> ⇒
 10 × Mdec(<dec_num>) + Mdec(<digit>)

 Chapter 3: Syntax and Semantics 28

Expressions
 Me(<expr>, s) ∆=

 case <expr> of
 <dec_num> ⇒ Mdec(<dec_num>, s)
 <var> ⇒ VARMAP(<var>, s)
 <binary_expr> ⇒
 if (<binary_expr>.<operator> = ‘+’) then
 Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else
 Me(<binary_expr>.<left_expr>, s) ×
 Me(<binary_expr>.<right_expr>, s)

 Chapter 3: Syntax and Semantics 29

Statement Basics
The meaning of a single statement executed in a
state s is a new state s’ (that reflects the effects
of the statement)

 Mstmt(Stmt , s) = s’

For a sequence of statements:
 Mstmt(Stmt1; Stmt2 , s) ∆=

 Mstmt(Stmt2 , Mstmt(Stmt1 , s))
 or
 Mstmt(Stmt1; Stmt2 , s) = S’’ where
 s’ = Mstmt(Stmt1 , s)
 s’’ = Mstmt(Stmt2 , s’)

 Chapter 3: Syntax and Semantics 30

Assignment Statements
Ma(x := E, s) ∆=

 s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>},
 where for j = 1, 2, ..., n,
 vj’ = VARMAP(ij, s) if ij ≠ x
 vj’ = Me(E, s) if ij = x

 Chapter 3: Syntax and Semantics 31

Sequence of Statements
 x := 5;
 y := x + 1; P1 P
 write(x * y); } P2

Initial state s0 = <mem0, i0, o0>

Mstmt(P , s) = Mstmt(P1 , Mstmt(x := 5 , s))

s1 = <mem1,i1,o1> where s1
 VARMAP(x, s1) = 5
 VARMAP(z, s1) = VARMAP(z, s0) for all z ≠ x
 i1 = i0, o1 = o0

} }

 Chapter 3: Syntax and Semantics 32

Sequence of Statements (cont.)

Mstmt(P1 , s1) = Mstmt(P2 , Mstmt(y := x + 1 , s1))

 s2

s2 = <mem2, i2, o2> where
 VARMAP(y, s2) = Me(x + 1 , s1) = 6
 VARMAP(z, s2) = VARMAP(z, s1) for all z ≠ y
 i2 = i1

 o2 = o1

 Chapter 3: Syntax and Semantics 33

Sequence of Statements (cont.)

Mstmt(P2 , s2) = Mstmt(write (x * y) , s2) = s3

 s3 = <mem3, i3, o3> where
 VARMAP(z, s3) = VARMAP(z, s2) for all z
 i3 = i2

 o3 = o2 • Me(x * y , s2) = o2 • 30

 Chapter 3: Syntax and Semantics 34

Sequence of Statements (concl.)

So,
Mstmt(P , s0) = s3 = <mem3, i3, o3 > where
 VARMAP(y, s3) = 6
 VARMAP(x, s3) = 5
 VARMAP(z, s3) = VARMAP(z, s0) for all z ≠ x, y
 i3 = i0

 o3 = o0 • 30

 Chapter 3: Syntax and Semantics 35

Logical Pretest Loops

The meaning of the loop is the value of the
program variables after the loop body has
been executed the prescribed number of
times, assuming there have been no errors
In essence, the loop has been converted
from iteration to recursion, where the
recursive control is mathematically defined
by other recursive state mapping functions
Recursion, when compared to iteration, is
easier to describe with mathematical rigor

 Chapter 3: Syntax and Semantics 36

Logical Pretest Loops (cont.)
Ml(while B do L, s) ∆=

 if Mb(B, s) = false then
 s
 else
 Ml(while B do L, Ms(L, s))

 Chapter 3: Syntax and Semantics 37

Evaluation of Denotational
Semantics

Advantages:
Compact & precise, with solid mathematical foundation
Provides a rigorous way to think about programs
Can be used to prove the correctness of programs
Can be an aid to language design
Has been used in compiler generation systems

Disadvantages
Requires mathematical sophistication
Hard for programmer to use

Uses
Semantics for Algol-60, Pascal, etc.
Compiler generation and optimization

 Chapter 3: Syntax and Semantics 38

Summary
Each form of semantic description has its
place:

Operational
Informal descriptions
Compiler work

Axiomatic
Reasoning about particular properties
Proofs of correctness

Denotational
Formal definitions
Provably correct implementations

