
1

Object-Oriented
Programming

In Text: Chapter 11

 Chapter 11: OOP 2

Categories of OOP Support
OOP support is added to an existing language

C++ (also supports procedural & data-oriented)
Ada 95 (also procedural and data-oriented)
CLOS (also supports FP)
Scheme (also supports FP)

Support OOP, but same appearance & basic structure of earlier
imperative languages

Eiffel (not based directly on any previous language)
Java (based on C++)

Pure OOP languages
Smalltalk

 Chapter 11: OOP 3

Paradigm Evolution

Procedural—1950s-1970s (procedural
abstraction)
Data-Oriented—early 1980s (data-oriented)
OOP—late 1980s (Inheritance and dynamic
binding)

 Chapter 11: OOP 4

Origins of Inheritance

Observations of the mid-late 1980s:
Productivity increases can come from reuse
Unfortunately:

ADTs are difficult to reuse—never quite
right
All ADTs are independent and at the same
level

Inheritance solves both—reuse ADTs after
minor changes and define classes in a
hierarchy

 Chapter 11: OOP 5

OOP Definitions
ADTs are called classes
Class instances are called objects
A class that inherits is a derived class or a subclass
The class from which another class inherits is a
parent class or superclass
Subprograms that define operations on objects are
called methods
The entire collection of methods of an object is
called its message protocol or message interface
Messages have two parts—a method name and the
destination object

 Chapter 11: OOP 6

Inheritance
In the simplest case, a class inherits all of the
entities of its parent
Inheritance can be complicated by access controls
to encapsulated entities

A class can hide entities from its subclasses
A class can hide entities from its clients

Besides inheriting methods as is, a class can modify
an inherited method

The new one overrides the inherited one
The method in the parent is overridden

Single vs. multiple inheritance
One disadvantage of inheritance for reuse: Creates
interdependencies among classes that complicate
maintenance

 Chapter 11: OOP 7

Class vs. Instance

There are two kinds of variables in a class:
Class variables - one/class
Instance variables - one/object

There are two kinds of methods in a class:
Class methods - messages to the class
Instance methods - messages to objects

 Chapter 11: OOP 8

Polymorphism in OOPLs
A polymorphic variable can refer to (or point to) an
instance of a class or any of its descendants
When a class hierarchy includes classes that
override methods and such methods are called
through a polymorphic variable, the binding to the
correct method must be dynamic
Polymorphism simplifies the addition of new
methods
Polymorphism allows client code to operate on a
variety of classes in a uniform way

 Chapter 11: OOP 9

Virtual Methods

Polymorphism in OOPLs is typically implemented via
dynamic binding
Some OOPLs allow some methods to be statically
bound
A method that can be dynamically bound is called a
virtual method
An abstract (pure virtual) method is one that does
not include definition (it only defines a protocol)
An abstract class is one that includes at least one
abstract method
An abstract class cannot be instantiated

 Chapter 11: OOP 10

Design Issues for OOPLs

Exclusivity of objects
Are subclasses subtypes?
Implementation and interface inheritance
Type checking and polymorphism
Single and multiple inheritance
Allocation and deallocation of objects

 Chapter 11: OOP 11

Design Issue: Exclusivity of Objects

Everything is an object
Adv.—elegance and purity
Disadv.—slow operations on simple objects (e.g., float)

Add objects to a complete typing system
Adv.—fast operations on simple objects
Disadv.—results in a confusing type system

Include an imperative-style typing system for
primitives but make everything else objects

Adv.—fast operations on simple objects and a relatively
small typing system
Disadv.—still some confusion because of the two type
systems

 Chapter 11: OOP 12

Design Issue: Are Subclasses
Subtypes?

Does an is-a relationship hold between a
parent class object and an object of the
subclass?
If so, how is it enforced?
If not, what does inheritance “mean”?

 Chapter 11: OOP 13

Design Issue: Implementation and
Interface Inheritance

Interface inheritance: subclass can only see
parent’s interface

Adv.—preserves encapsulation
Disadv.—can result in inefficiencies

Implementation inheritance: subclass can
see both the interface and the
implementation of parent

Disadv.—changes to the parent class require
recompilation of subclasses, and sometimes even
modification of subclasses
Disadv.—subclass can introduce errors in parent

 Chapter 11: OOP 14

Design Issue: Type Checking and
Polymorphism

Polymorphism may require dynamic type
checking of parameters and the return
value
Dynamic type checking is costly and delays
error detection
If overriding methods are restricted to
having the same parameter types and
return type, the checking can be static

 Chapter 11: OOP 15

Single and Multiple Inheritance

Disadvantages of multiple inheritance:
Language and implementation complexity
Potential inefficiency—dynamic binding
costs more with multiple inheritance (but
not much)

Advantage:
Sometimes it is extremely convenient and
valuable

 Chapter 11: OOP 16

Allocation and Deallocation of
Objects

From where are objects allocated?
Stack-allocated objects are more efficient, but
then not all object references are uniform
If they all live in the heap, references to then are
uniform, but there is a (minor) performance
penalty

Is allocation implicit or explicit?
How is aliasing handled?
What is the semantics of assignment?
Is deallocation explicit or implicit?

 Chapter 11: OOP 17

Dynamic and Static Binding

Should all binding of messages to methods
be dynamic?
If none are, you lose the advantages of
dynamic binding
If all are, it is inefficient

 Chapter 11: OOP 18

Overview of Smalltalk

Smalltalk is a pure OOP language
Everything is an object
All computation is through objects sending
messages to objects
It adopts none of the appearance of imperative
languages

The Smalltalk Environment
The first complete GUI system
A complete system for software development
All of the system source code is available to the
user, who can modify it if he/she wants

 Chapter 11: OOP 19

Introduction to Smalltalk

Expressions:
Literals (numbers, strings, and keywords)
Variable names (all variables are
references)
Message expressions
Block expressions

 Chapter 11: OOP 20

Smalltalk Message Expressions

Two parts: the receiver object and the
message itself
The message part specifies the method and
possibly some parameters
Replies to messages are objects
Three message forms: unary, binary, and
keyword

 Chapter 11: OOP 21

Smalltalk Message Forms
Unary (no parameters)

myAngle sin
(receiver = myAngle, message = sin)

Binary (one parameter, an object)
12 + 17

(receiver=12, message=+, param=17)
Keyword (use keywords to organize params)

myArray at: 1 put: 5
(receiver=myArray, message=at:put:, params=1, 5)

Multiple messages to the same object can be strung together,
separated by semicolons

 Chapter 11: OOP 22

Smalltalk Methods

General form:

message_pattern [| temps |] statements

A message pattern is like the formal
parameters of a subprogram

For a unary message, it is just the name
For others, it lists keywords and formal
names
temps are just names—Smalltalk is
typeless!

 Chapter 11: OOP 23

Smalltalk Assignments

Simplest Form:
name1 <- name2
It is simply a pointer assignment
RHS can be a message expression
index <- index + 1

 Chapter 11: OOP 24

Smalltalk Blocks
A sequence of statements, separated by periods,
delimited by brackets

[index <- index + 1. sum <- sum + index]

A block specifies something, but doesn’t do it
To request the execution of a block, send it the
unary message, value
e.g., […] value
If a block is assigned to a variable, it is evaluated by
sending value to that variable
e.g.,
 addIndex <- [sum <- sum + index]
 …
 addIndex value

 Chapter 11: OOP 25

Blocks with Parameters

Blocks can have parameters

[:x :y | statements]

If a block contains a relational expression, it
returns a Boolean object, true or false
The objects true and false have methods for
building control constructs

 Chapter 11: OOP 26

Smalltalk Iteration

The method whileTrue: from Block is used
for pretest logical loops. It is defined for all
blocks that return Boolean objects

 [count <= 20]
 whileTrue: [sum <- sum + count.
 count <- count + 1]
timesRepeat: is defined for integers and can
be used to build counting loops

 xCube <- 1.
 3 timesRepeat: [xCube <- xCube * x]

 Chapter 11: OOP 27

Smalltalk Selection

The Boolean objects have the method
ifTrue:ifFalse: , which can be used to build
selection

 total = 0
 ifTrue: […]
 ifFalse: […]

 Chapter 11: OOP 28

Smalltalk Design Choices
Type Checking and Polymorphism

All bindings of messages to methods is dynamic
The process is to search the object to which the message is
sent for the method; if not found, search the superclass,
etc.
Because all variables are typeless, methods are all
polymorphic

Inheritance
All subclasses are subtypes (nothing can be hidden)
All inheritance is implementation inheritance
No multiple inheritance
Methods can be redefined, but the two are not related

 Chapter 11: OOP 29

C++

General Characteristics:
Mixed typing system
Constructors and destructors
Elaborate access controls to class entities

Inheritance
A class need not be subclasses of any class
Access controls for members are:

Private (visible only in the class and friends)
Public (visible in subclasses and clients)
Protected (visible in the class and in
subclasses, but not clients)

 Chapter 11: OOP 30

C++ Inheritance (cont.)
In addition, the subclassing process can be declared
with access control (private or public), which limits
visibility over inherited features
Private derivation: inherited public and protected
members are private in the subclasses
Public derivation: public and protected members
are also public and protected in subclasses
Multiple inheritance is supported
Both static and dynamic method binding are
supported

 Chapter 11: OOP 31

Java
General Characteristics

All data are objects except the primitive types
All primitive types have wrapper classes that store one
data value
All objects are heap-dynamic, accessed through reference
variables, and most are allocated with new

Inheritance
Single inheritance only, but there is an abstract class
category (interfaces) that provides some of the benefits of
multiple inheritance
An interface can include only method declarations and
named constants (pure abstract class)
Methods can be final (cannot be overriden)

 Chapter 11: OOP 32

Java (cont.)
- Dynamic Binding

- In Java, all messages are dynamically bound to
methods, unless the method is final

- Encapsulation
- Two constructs, classes and packages
- Packages provide a container for classes that are

related (can be named or unamed)
- Entities defined without a scope (access) modifier

are only visible within the package
- Every class in a package is a friend to the package

scope entities elsewhere in the package
- Package scope is an alternative to the friends of

C++

 Chapter 11: OOP 33

Ada 95
- General Characteristics

- OOP was one of the most important extensions to Ada 83
- Encapsulation container is a package that defines a tagged

type
- A tagged type is one in which every object includes a tag to

indicate its type (at run-time)
- Tagged types can be either private types or records

- Inheritance
- Subclasses are derived from tagged types
- New entities in a subclass are added in a record
- All subclasses are subtypes
- Single inheritance only, except through generics

 Chapter 11: OOP 34

Ada 95 (cont.)

- Dynamic Binding
- Dynamic binding is done using

polymorphic variables called classwide
types

- Other bindings are static
- Any method may be dynamically bound

 Chapter 11: OOP 35

Eiffel

Pure OOP with simple, clean design
Design by contract
Method pre- and postconditions captured as
assertions
Class invariants also recorded as assertions
Run-time checking of preconditions,
postconditions, and invariants
Behavioral notion of “is-a” is (partially)
enforced

 Chapter 11: OOP 36

Eiffel Characteristics
- Has primitive types and objects
- All objects get three operations, copy,

clone, and equal
- Methods are called routines
- Instance variables are called attributes
- The routines and attributes of a class are

together called its features
- Object creation is done with an operator (!!)
- Constructors are defined in a creation

clause, and are explicitly called in the
statement in which an object is created

 Chapter 11: OOP 37

Eiffel Inheritance
- The parent of a class is specified with the inherit clause
- Feature clauses specify access control to the

entities defined in them
- Without a modifier, the entities in a feature clause are visible

to both subclasses and clients
- With the name of the class as a modifier, entities are hidden

from clients but are visible to subclasses
- With the none modifier, entities are hidden from both clients

and subclasses
- Inherited features can be hidden from subclasses with

undefine
- Abstract classes can be defined by including the deferred

modifier on the class definition

 Chapter 11: OOP 38

Eiffel Dynamic Binding

- Nearly all message binding is dynamic
- An overriding method must have

parameters that are assignment compatible
with those of the overridden method

- All overriding features must be defined in a
redefine clause

- Access to overridden features is possible by
putting their names in a rename clause

 Chapter 11: OOP 39

Implementing OO Constructs

- Class instance records (CIRs) store the state
of an object

- If a class has a parent, the subclass instance
variables are added to the parent CIR

- Virtual Method Tables (VMTs) are used for
dynamic binding

