Logic Programming
Foundations; Prolog

¢

In Text: Chapter 15

Logic Programming -- Basic Principles

|
B LP languages are declarative

B Declarative => uses “declarations” instead of
assignment statements + control flow

B Declarative semantics: there is a simple way to
determine the meaning of each statement;
doesn’t depend on how the statement might be
used to solve a problem

B much simpler than imperative semantics
B Logic programming languages are
nonprocedural

B Instead of specifying how a result is to be
computed, we describe the desired result and let
the system figure out how to compute it

B Chapter 15: LP Foundations, Prolog B 2

Logic Programming Example
.
B To see declarative vs. procedural

differences, consider this logic pseudocode
for sorting a list:

sort(old_list, new list) <

permute(old_list, new list) and sorted(new list)
sorted(list) <

Vjsuch that 1 <j<n:list(j) < list(j+1)

®m Prolog is an example of a logic
programming language.

B Chapter 15: LP Foundations, Prolog & 3

Prolog Name Value System

|
B Prolog is case sensitive

B Object names (atoms) starting with a lower
case letter

B Literals include integers, reals, strings

B “Variable” identifiers start with an upper
case letter

B Predicate names (functions) start with lower
case letters (like objects, but distinguishable
by context):

<name> (<list of arguments>)

B Chapter 15: LP Foundations, Prolog & 4

Prolog Name Value System (cont.)

-
“Latent” typing, as in Scheme
Types — atoms, integers, strings, reals
Structures — lists, similar to LISP (see later)
Scope
B Atoms and predicate names are all global

B Predicate parameters and “variables’ are local
to rule in which they are used

® No global variables or state

m State of the program does not include value
memory

B “Variables” in Prolog don’t change value once they
are bound (like mathematical variables)

B Chapter 15: LP Foundations, Prolog & 5

Prolog Statements

B Three kinds:
B Fact statements
H Rule statements
B Goal statements

m Typically, facts + rules define a program

B Goal statements cause execution to begin
B You give a goal to run your program

B Chapter 15: LP Foundations, Prolog & 6

Prolog -- Imperatives

B Prolog maintains a database of known
iInNformation about its “world” in the form of
facts and rules:

B Fact statements:
female(shelley).
male(bill).
father(bill, shelley).

B Rule statements:
ancestor(mary, shelley) :- mother(mary,shelley).
grandparent(x,z) ;- parent(x,y), parent(y,z).

B A Prolog program is a collection of such
facts and rules.

B Chapter 15: LP Foundations, Prolog & 7

Giving goals

B Given a collection of facts and rules, you can
specify theorems or propositions to prove in
the form of a goal statement:

grandfather(bill, mary).

B A theorem-proving model is used to see If
this proposition can be inferred from the
database.

B “yes” or ‘“success” means it is true (according to
the database facts and rules)

m “no” or “faillure” means that it could not be
proven true (given the facts and rules in the
database)

B Chapter 15: LP Foundations, Prolog & 8

Math Foundations: Predicate Calculus

® A symbolic form of logic that deals with expressing
and reasoning about propositions

Statements/queries about state of the “universe”
Simplest form: atomic proposition
Form: functor (parameters)

Examples: man (jake)
like (bob, redheads)

m Can either assert truth (“jake iIs a man’) or query
existing knowledge base (“is jake a man?”)

B Can contain variables, which can become bound
man (X)

B Chapter 15: LP Foundations, Prolog & 9

Compound Propositions

B Contain two or more atomic propositions
connected by various logical operators:

Name Symbol Example Meaning

negation - - a not a
conjunction A anb aandb
disjunction V avb aorb
equivalence = a=nDn aequivalenttob

a=b aimpliesb
a< b b implies a

Implication =>
<=

B Chapter 15: LP Foundations, Prolog & 10

Predicate Calculus

|
B Quantifiers -- used to bind variables in
propositions
® universal quantifier: V
Vx.P -- means “for all x, P is true”

m existential quantifier: J
dx.P -- means “there exists a value of x such that
Pis true”

m Examples:
Vx.(woman(x) = human(x))

dx.(mother(mary,x)) A male (x))

B Chapter 15: LP Foundations, Prolog B 11

Clausal Form

B A canonical form for propositions :
BivBav...vBn<=Ai1AA2A..AAm

B means: If all of the A’s are true, at least one of the
B’s must be true
right side is the antecedent; left side is the
consequent

m Examples:
likes(bob, mary) < likes(bob, redheads) A

redhead(mary)
father(louis, al) <= father(louis, violet) A

father(al, bob) A mother(violet, bob) A
grandfather(louis,bob)

B Chapter 15: LP Foundations, Prolog B 12

Horn Clauses

B A proposition with zero or one term in the
consequent is called a Horn clause.

B |If there are no terms it is called a Headless Horn
clause:
man(jake)

B If there’s one term, it iIs a Headed Horn clause:
person(jake) < man(jake)

B Chapter 15: LP Foundations, Prolog & 13

Resolution

.

B The process of computing inferred
propositions from given propositions

B Example:

mif we know:
older(joanne, jake) < mother(joanne, jake)
wiser(joanne, jake) <= older(joanne, jake)

B we can infer the proposition:
wiser(joanne, jake) < mother(joanne, jake)

B There are several logic rules that can be
applied in resolution. In practice, the
process can be quite complex.

B Chapter 15: LP Foundations, Prolog B 14

PROLOG Control

B The right hand sides of predicates are
“evaluated” left to right

® On a right hand side, a false predicate causes
the system to return to the last predicate to
Its left with a true value; a true result allows
the evaluation of the right hand side to
continue to the right.

B Collections of predicates are “examined” In
their lexical (textual) order — top to
bottom, first to last

B Recursion!

B Chapter 15: LP Foundations, Prolog & 15

PROLOG Control (cont.)

B A reference to a predicate is much like a
function call to the collection of predicates
of that name

B State of the program contains markers to
last successful (i.e. True) instantiation in
collections of facts or rules so as to support
backtracking in recursion

B When all markers are beyond end of all
applicable predicate collections, result is
“n011

B Chapter 15: LP Foundations, Prolog & 16

rolog — Modularity and Abstraction

B Facts and predicates of the same name are
collected by a Prolog system to form
modules — the components do not have to
be textually contiguous

m Collections of facts and rules may be stored
IN separate named files

B Files are “consulted” to bring them into a
workspace

B Chapter 15: LP Foundations, Prolog B 17

Imperatives Continued

B Comparison Operators
=, <, >, >=, =< (check for which!), \=

B Expressions
most Prologs support integer arithmetic
generally safest if expressions are contained

INn parentheses
check it out in your implementation

B Assighment (local)
“1s” operator, infix
assigns right hand side value to variable on
left
Xis (3+4)

B Chapter 15: LP Foundations, Prolog & 18

Prolog — Input/Output

.
B The output to a goal statement (query) can

be:
The truth value of the resulting evaluation,

or
The set of values that cause the goal to be

true (Instantiation)
read(X).
write(Y).

B Chapter 15: LP Foundations, Prolog & 19

Prolog — Input/Output

B The output to a goal statement (query) can be:
B The truth value of the resulting evaluation, or

B The set of values that cause the goal to be true
(instantiation)

B read(X).
m write(Y).
read(X), Yis (X + 1), read(X), Y= (X + 1),
write(Y). write(Y).
3. 6.
4 6+1
X=3 X=6
Y=4; Y = 6+1 ;
no no

B Chapter 15: LP Foundations, Prolog & 20

Prolog Programs

B Declare facts about objects and their inter-
relationships

B Define rules (“clauses”) that capture object
Inter-relationships

B Ask questions (goals) about objects and their
Inter-relationships

B Chapter 15: LP Foundations, Prolog B 21

Facts

B facts are true relations on objects
®m Michael is Cathy’s father father(michael, cathy).

m Chuck is Michael’s and Julie’s father father(chuck, michael).
father(chuck, julie).

B David is Chuck’s father father(david, chuck).
® Sam is Melody’s father father(sam, melody).
m Cathy is Melody’s mother mother(cathy, melody).
m Hazel is Michael’s and Julie’s mothermother(hazel, michael).

mother(hazel, julie).
®m Melody is Sandy’s mother mother(melody, sandy).

B facts need not make sense

B The moon is made of green cheese made_ of(moon,
green_cheese).

B Chapter 15: LP Foundations, Prolog B 22

Rules

B A person’s parent is their mother or father

B A person’s grandfather is the father of one of their
parents

B A person’s grandmother is the mother one of their
parents

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
[* could also be:
parent(X, Y) :- father(X, Y); mother(X, Y). */

grandfather(X, Y) :- father(X, A), parent(A, Y).
grandmother(X, Y) :- mother(X, A), parent(A, Y).

B Chapter 15: LP Foundations, Prolog & 23

Goals: Questions or Queries

Who is father of cathy ?
m ?- father(X, cathy).
Who is chuck the father of ?
m ?- father(chuck, X).
Is chuck the parent of julie ?
m ?- parent(chuck, julie).
Who is the grandmother of sandy ?
m ?- grandmother(X, sandy).

Who is the grandfather of whom ?
m ?- grandfather(X, Y).

B Chapter 15: LP Foundations, Prolog B 24

Prolog Names Revisited

.
B atoms:. Symbolic values
m father(bill, mike).

B Strings of letters, digits, and underscores
starting with lower case letter

m Variable: unbound entity
m father(X, mike).

B Strings of letters, digits, and underscores
starting with UPPER CASE letter

m Variables are not bound to a type by
declaration

B Chapter 15: LP Foundations, Prolog & 25

Prolog Facts & Rules

B Facts: unconditional assertion
B assumed to be true
B contain no variables
®mmother(carol, jim).
B stored in database

B Rules: assertion from which conclusions can
be drawn if given conditions are true:
parent(X,Y) - father(X,Y); mother (X,Y).
B Contain variables for instantiation
B Also stored in database

B Chapter 15: LP Foundations, Prolog & 26

Prolog Instantiation

B |nstantiation: binding of a variable to value (and
thus, a type):

color (apple, red).
FACTS <
color (banana, yellow).
?- color (X, yellow). } question (goal)

X=apple - color (apple, yell

Instantiation no matching pattern
X = banana color (banana, yellow)
yes

B Chapter 15: LP Foundations, Prolog B 27

Prolog Unification

B Unification: Process of finding instantiation
of variable for which “match” is found In
database of facts and rules

B Developed by Alan Robinson about 1965, but
not applied until the 1970s to logic
programming

B The key to Prolog

B Chapter 15: LP Foundations, Prolog & 28

Prolog Example

]
color(banana, yellow).
color(squash, yellow).
color(apple, green).
color(peas, green).

FACTS
fruit(banana).

fruit(apple).
vegetable(squash).
vegetable(peas).

bob eags green colored vegetables

RULE eats(bob, X) :- color(X, green), vegetable(X).
bob eats X if
Xisgreenand Xis aveggie

B Chapter 15: LP Foundations, Prolog & 29

Does Bob Eat Apples?

B Bob eats green vegetables:

eats(bob, X) -
color(X, green),
vegetable(X).

B Does bob eat apples ?
?- eats(bob, apple).

color(apple, green) => match
vegetable(apple) =>no

B Chapter 15: LP Foundations, Prolog & 30

What Does Bob Eat?

?- eats(bob, X).
color(banana, green) => no

color(squash, green) =>no

color(apple, green) =>yes
vegetable(apple) => no

color(peas, green) =>yes
vegetable(peas) =>yes

Therefore:
eats(bob, peas) true

X = peas

B Chapter 15: LP Foundations, Prolog B 31

Prolog And/0Or/Not

B Conjunctive rules: Xif Y and Z
father(X, Y) - parent(X,Y),
male(X).
B Disjunctive rules: XifYorZ
parent(X, Y) :- mother(X, Y).
parent(X, Y) .- mother(X,Y). /*or?*/
parent(X, Y) .- father(X, Y); mother(X, Y).
B Negation rules: Xif notY
good(X) :- \+ bad(X).
mother(X, Y) :- parent(X, Y), \+ male(X).
B Use Parentheses for grouping

B Chapter 15: LP Foundations, Prolog B 32

“Older” Example

older(george, john).

older(alice, george).

older(john, mary).

older(X, 2) :- older(X, Y), older(Y, 2).

® Now when we ask a query that will result in TRUE,
we get the right answer:
?- older(george, mary).
yes

B But a query that is FALSE goes into an endless loop:
?- older(mary, john).

B Left recursion: the last element in older iIs the

predicate that is repeatedly tried
B Chapter 15: LP Foundations, Prolog & 33

Solving Left Recursion Problems

|
B Remove the older rule and replace with:

Is_older(X,Y) ;- older(X, Y).
Is_older(X, Z) .- older(X, Y), is_older(Y, 2).

® Now:

?-1s_older(mary, john).
no

B Chapter 15: LP Foundations, Prolog & 34

Don’t Care!

.
m Variables can also begin with an underscore

B Any such variable is one whose actual value
doesn’t matter: you “don’t care” what it is,
so you didn’t give it a real name

B Used for aguments or parameters whose
Instantiated value is of no consequence

?-1s_older(george,).

B Succeeds, Indicating that there does exist an
argument which will cause the gquery to be
true, but the value is not returned

B Chapter 15: LP Foundations, Prolog & 35

Prolog Lists

B Lists are represented by [...]
® An explicit list [a,b,c], or [A,B,C]

m As in LISP, we can identify the head and tail
of a list through the use of the punctuation
symbol “|” (vertical bar) in a list pattern:

m[H|T]or [|T]

B There are no explicit functions to select the
head or tail (such as CAR and CDR)

B |[nstead, lists are broken down by using
patterns as formal arguments to a predicate

B Chapter 15: LP Foundations, Prolog & 36

Sample List Functions

/*Membership*/
member(H, [H | _]).
member(H, [_ | T]) :- member(H, T).

/*Concatenation of two lists*/
concat([], L, L).
concat([H | T], L, [H | U]) :- concat(T, L, U).

/*Reverse a list*/
reverse([], []).
reverse([H | T], L) :-reverse(T, R), concat(R, [H], L).

/*Equality of Lists™/
equal_lists([], []).

equal_lists([H1 | T1], [H2 | T2]) :- HI = H2,
equal_lists(T1, T2).

B Chapter 15: LP Foundations, Prolog B 37

A Logic Puzzle

Three children, Anne, Brian, and Mary, live on the
same street

B Their last names are Brown, Green, and White

B Oneis7/,oneis 9, andoneis 10.

® We know:

1. Miss Brown is three years older than Mary.
2. The child whose name is White is nine years old.

B What are the children's ages?

B Chapter 15: LP Foundations, Prolog & 38

State the Facts

child(anne).
child(brian).
child(mary).

age(7).
age(9).
age(10).

house(brown).
house(green).
house(white).

female(anne).
female(mary).
male(brian).

B Chapter 15: LP Foundations, Prolog & 39

Define the Rules

cluel(Child, Age, House, Marys Age) :-
House \= brown;
House = brown, female(Child),
Marys Age == Age - 3.

clue2(_Child, Age, House) -
House \= white ; Age = 9.

are _unique(A, B, C) -
A\=B,A\=C,B\=C.

B Chapter 15: LP Foundations, Prolog & 40

Guess A Solution

guess_child(Child, Age, House) :-
child(Child), age(Age), house(House).

solution(Annes_Age, Annes_House,
Brians_Age, Brians_House,
Marys Age, Marys House) -
/* Guess an answer */
guess _child(anne, Annes _Age, Annes House),
guess_child(brian, Brians_Age, Brians_House),
guess _child(mary, Marys Age, Marys _House),
are_uniqgue(Annes_Age, Brians_Age, Marys_Age),
are _uniqgue(Annes_House, Brians_House,
Marys House),

B Chapter 15: LP Foundations, Prolog B 41

Test It For Veracity

Solution(...
/™ filter agalnst clue 1 */

cluel(anne, Annes Age, Annes House,
Marys Age),
cluel(brian, Brians_Age, Brians_House,
Marys Age),
cluel(mary, Marys Age, Marys House,
Marys Age),

/™ filter against clue 2 */

clue2(anne, Annes _Age, Annes House),
clue2(brian, Brians_Age, Brians _House),
clue2(mary, Marys Age, Marys House).

B Chapter 15: LP Foundations, Prolog B 42

Prolog Issues

B Efficiency—theorem proving can be
extremely time consuming

B Resolution order control
B Processing is always top to bottom, left to right.
B Indirect control by your choice of ordering

m Uses backward chaining; sometimes forward
chaining is better

B Prolog always searches depth-first, though
sometimes breadth-first can work better

B Chapter 15: LP Foundations, Prolog & 43

Prolog Limitations

®m “Closed World”—the only truth is that
recorded in the database

B Negation Problem—failure to prove is not
eguivalent to logically false

® not(not(some_goal)) is not equivalent to
some_goal

B Chapter 15: LP Foundations, Prolog & 44

