
1

Logic Programming
Foundations; Prolog

In Text: Chapter 15

 Chapter 15: LP Foundations, Prolog 2

Logic Programming -- Basic Principles

LP languages are declarative
Declarative => uses “declarations” instead of
assignment statements + control flow
Declarative semantics: there is a simple way to
determine the meaning of each statement;
doesn’t depend on how the statement might be
used to solve a problem
much simpler than imperative semantics

Logic programming languages are
nonprocedural

Instead of specifying how a result is to be
computed, we describe the desired result and let
the system figure out how to compute it

 Chapter 15: LP Foundations, Prolog 3

Logic Programming Example
To see declarative vs. procedural
differences, consider this logic pseudocode
for sorting a list:

sort(old_list, new_list) ⇐
 permute(old_list, new_list) and sorted(new_list)
sorted(list) ⇐
 ∀j such that 1 ≤ j < n: list(j) ≤ list(j+1)

Prolog is an example of a logic
programming language.

 Chapter 15: LP Foundations, Prolog 4

Prolog Name Value System
Prolog is case sensitive
Object names (atoms) starting with a lower
case letter
Literals include integers, reals, strings
“Variable” identifiers start with an upper
case letter
Predicate names (functions) start with lower
case letters (like objects, but distinguishable
by context):

<name> (<list of arguments>)

 Chapter 15: LP Foundations, Prolog 5

Prolog Name Value System (cont.)

“Latent” typing, as in Scheme
Types — atoms, integers, strings, reals
Structures — lists, similar to LISP (see later)
Scope

Atoms and predicate names are all global
Predicate parameters and “variables” are local
to rule in which they are used
No global variables or state

State of the program does not include value
memory
“Variables” in Prolog don’t change value once they
are bound (like mathematical variables)

 Chapter 15: LP Foundations, Prolog 6

Prolog Statements
Three kinds:

Fact statements
Rule statements
Goal statements

Typically, facts + rules define a program
Goal statements cause execution to begin

You give a goal to run your program

 Chapter 15: LP Foundations, Prolog 7

Prolog -- Imperatives
Prolog maintains a database of known
information about its “world” in the form of
facts and rules:

Fact statements:
 female(shelley).
 male(bill).
 father(bill, shelley).

Rule statements:
 ancestor(mary, shelley) :- mother(mary,shelley).
 grandparent(x,z) :- parent(x,y), parent(y,z).

A Prolog program is a collection of such
facts and rules.

 Chapter 15: LP Foundations, Prolog 8

Giving goals
Given a collection of facts and rules, you can
specify theorems or propositions to prove in
the form of a goal statement:

 grandfather(bill, mary).

A theorem-proving model is used to see if
this proposition can be inferred from the
database.

“yes” or “success” means it is true (according to
the database facts and rules)
“no” or “failure” means that it could not be
proven true (given the facts and rules in the
database)

 Chapter 15: LP Foundations, Prolog 9

Math Foundations: Predicate Calculus

A symbolic form of logic that deals with expressing
and reasoning about propositions
Statements/queries about state of the “universe”
Simplest form: atomic proposition
Form: functor (parameters)
Examples: man (jake)

 like (bob, redheads)
Can either assert truth (“jake is a man”) or query
existing knowledge base (“is jake a man?”)
Can contain variables, which can become bound
 man (x)

 Chapter 15: LP Foundations, Prolog 10

Compound Propositions
Contain two or more atomic propositions
connected by various logical operators:

 Name Symbol Example Meaning
negation ¬ ¬ a not a
conjunction ∧ a ∧ b a and b
disjunction ∨ a ∨ b a or b
equivalence ≡ a ≡ b a equivalent to b

implication ⇒ a ⇒ b a implies b
⇐ a ⇐ b b implies a

 Chapter 15: LP Foundations, Prolog 11

Predicate Calculus
Quantifiers -- used to bind variables in
propositions

universal quantifier: ∀
∀x.P -- means “for all x, P is true”
existential quantifier: ∃
∃x.P -- means “there exists a value of x such that
P is true”
Examples:
∀x.(woman(x) ⇒ human(x))
 ∃x.(mother(mary,x)) ∧ male (x))

 Chapter 15: LP Foundations, Prolog 12

Clausal Form
A canonical form for propositions :

B1 ∨ B2 ∨ ... ∨ Bn ⇐ A1 ∧ A2 ∧ ... ∧ Am

means: if all of the A’s are true, at least one of the
B’s must be true
right side is the antecedent; left side is the
consequent
Examples:
likes(bob, mary) ⇐ likes(bob, redheads) ∧

redhead(mary)
father(louis, al) ⇐ father(louis, violet) ∧

father(al, bob) ∧ mother(violet, bob) ∧
grandfather(louis,bob)

 Chapter 15: LP Foundations, Prolog 13

Horn Clauses
A proposition with zero or one term in the
consequent is called a Horn clause.

If there are no terms it is called a Headless Horn
clause:

man(jake)

If there’s one term, it is a Headed Horn clause:
person(jake) ⇐ man(jake)

 Chapter 15: LP Foundations, Prolog 14

Resolution
The process of computing inferred
propositions from given propositions
Example:

if we know:
older(joanne, jake) ⇐ mother(joanne, jake)
wiser(joanne, jake) ⇐ older(joanne, jake)

we can infer the proposition:
wiser(joanne, jake) ⇐ mother(joanne, jake)

There are several logic rules that can be
applied in resolution. In practice, the
process can be quite complex.

 Chapter 15: LP Foundations, Prolog 15

PROLOG Control
The right hand sides of predicates are
“evaluated” left to right
On a right hand side, a false predicate causes
the system to return to the last predicate to
its left with a true value; a true result allows
the evaluation of the right hand side to
continue to the right.
Collections of predicates are “examined” in
their lexical (textual) order — top to
bottom, first to last
Recursion!

 Chapter 15: LP Foundations, Prolog 16

PROLOG Control (cont.)
A reference to a predicate is much like a
function call to the collection of predicates
of that name
State of the program contains markers to
last successful (i.e. True) instantiation in
collections of facts or rules so as to support
backtracking in recursion
When all markers are beyond end of all
applicable predicate collections, result is
“no”

 Chapter 15: LP Foundations, Prolog 17

Prolog — Modularity and Abstraction

Facts and predicates of the same name are
collected by a Prolog system to form
modules — the components do not have to
be textually contiguous
Collections of facts and rules may be stored
in separate named files
Files are “consulted” to bring them into a
workspace

 Chapter 15: LP Foundations, Prolog 18

Imperatives Continued
Comparison Operators
=, <, >, >=, =< (check for which!), \=
Expressions
most Prologs support integer arithmetic
generally safest if expressions are contained
in parentheses
check it out in your implementation
Assignment (local)
“is” operator, infix
assigns right hand side value to variable on
left
X is (3+4)

 Chapter 15: LP Foundations, Prolog 19

Prolog — Input/Output
The output to a goal statement (query) can
be:
The truth value of the resulting evaluation,
or
The set of values that cause the goal to be
true (instantiation)
read(X).
write(Y).

 Chapter 15: LP Foundations, Prolog 20

Prolog — Input/Output
The output to a goal statement (query) can be:

The truth value of the resulting evaluation, or
The set of values that cause the goal to be true
(instantiation)

read(X).
write(Y).

read(X), Y is (X + 1),
write(Y).
3 .
4
X = 3
Y = 4 ;

no

read(X), Y = (X + 1),
write(Y).
6 .
6+1
X = 6
Y = 6+1 ;

no

 Chapter 15: LP Foundations, Prolog 21

Prolog Programs
Declare facts about objects and their inter-
relationships
Define rules (“clauses”) that capture object
inter-relationships
Ask questions (goals) about objects and their
inter-relationships

 Chapter 15: LP Foundations, Prolog 22

Facts
facts are true relations on objects

Michael is Cathy’s father
Chuck is Michael’s and Julie’s father

David is Chuck’s father
Sam is Melody’s father
Cathy is Melody’s mother
Hazel is Michael’s and Julie’s mother

Melody is Sandy’s mother

facts need not make sense
The moon is made of green cheese

father(michael, cathy).
father(chuck, michael).
father(chuck, julie).
father(david, chuck).
father(sam, melody).
mother(cathy, melody).
mother(hazel, michael).
mother(hazel, julie).
mother(melody, sandy).

made_of(moon,
green_cheese).

 Chapter 15: LP Foundations, Prolog 23

Rules
A person’s parent is their mother or father
A person’s grandfather is the father of one of their
parents
A person’s grandmother is the mother one of their
parents

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
/* could also be:
 parent(X, Y) :- father(X, Y); mother(X, Y). */

grandfather(X, Y) :- father(X, A), parent(A, Y).

grandmother(X, Y) :- mother(X, A), parent(A, Y).

 Chapter 15: LP Foundations, Prolog 24

Goals: Questions or Queries
Who is father of cathy ?

?- father(X, cathy).
Who is chuck the father of ?

?- father(chuck, X).
Is chuck the parent of julie ?

?- parent(chuck, julie).
Who is the grandmother of sandy ?

?- grandmother(X, sandy).
Who is the grandfather of whom ?

?- grandfather(X, Y).

 Chapter 15: LP Foundations, Prolog 25

Prolog Names Revisited
atoms: Symbolic values

father(bill, mike).
Strings of letters, digits, and underscores
starting with lower case letter
Variable: unbound entity

father(X, mike).
Strings of letters, digits, and underscores
starting with UPPER CASE letter
Variables are not bound to a type by
declaration

 Chapter 15: LP Foundations, Prolog 26

Prolog Facts & Rules
Facts: unconditional assertion

 assumed to be true
contain no variables

mother(carol, jim).
stored in database

Rules: assertion from which conclusions can
be drawn if given conditions are true:

parent(X, Y) :- father(X, Y); mother (X, Y).
Contain variables for instantiation
Also stored in database

 Chapter 15: LP Foundations, Prolog 27

Prolog Instantiation
Instantiation: binding of a variable to value (and
thus, a type):

color (apple, red).
 FACTS
 color (banana, yellow).

 ?- color (X, yellow). } question (goal)

 X = apple color (apple, yellow)
 instantiation no matching pattern

 X = banana color (banana, yellow)
 yes

 Chapter 15: LP Foundations, Prolog 28

Prolog Unification
Unification: Process of finding instantiation
of variable for which “match” is found in
database of facts and rules
Developed by Alan Robinson about 1965, but
not applied until the 1970s to logic
programming
The key to Prolog

 Chapter 15: LP Foundations, Prolog 29

Prolog Example
color(banana, yellow).

 color(squash, yellow).
 color(apple, green).
 color(peas, green).

 FACTS
 fruit(banana).
 fruit(apple).
 vegetable(squash).
 vegetable(peas).

 bob eats green colored vegetables
 RULE eats(bob, X) :- color(X, green), vegetable(X).

bob eats X if
X is green and X is a veggie

 Chapter 15: LP Foundations, Prolog 30

Does Bob Eat Apples?
Bob eats green vegetables:
eats(bob, X) :-
 color(X, green),
 vegetable(X).

Does bob eat apples ?
 ?- eats(bob, apple).

 color(apple, green) => match
 vegetable(apple) => no

 Chapter 15: LP Foundations, Prolog 31

What Does Bob Eat?

?- eats(bob, X).
 color(banana, green) => no
 color(squash, green) => no
 color(apple, green) => yes
 vegetable(apple) => no
 color(peas, green) => yes
 vegetable(peas) => yes

Therefore:
 eats(bob, peas) true

 X = peas

 Chapter 15: LP Foundations, Prolog 32

Prolog And/Or/Not
Conjunctive rules: X if Y and Z
father(X, Y) :- parent(X, Y),

 male(X).
Disjunctive rules: X if Y or Z
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- mother(X, Y). /* or */
parent(X, Y) :- father(X, Y); mother(X, Y).

Negation rules: X if not Y
good(X) :- \+ bad(X).
mother(X, Y) :- parent(X, Y), \+ male(X).

Use Parentheses for grouping

 Chapter 15: LP Foundations, Prolog 33

“Older” Example
older(george, john).
older(alice, george).
older(john, mary).
older(X, Z) :- older(X, Y), older(Y, Z).

Now when we ask a query that will result in TRUE,
we get the right answer:

 ?- older(george, mary).
 yes

But a query that is FALSE goes into an endless loop:
 ?- older(mary, john).

Left recursion: the last element in older is the
predicate that is repeatedly tried

 Chapter 15: LP Foundations, Prolog 34

Solving Left Recursion Problems

Remove the older rule and replace with:

is_older(X, Y) :- older(X, Y).
is_older(X, Z) :- older(X, Y), is_older(Y, Z).

Now:
 ?- is_older(mary, john).
 no

 Chapter 15: LP Foundations, Prolog 35

Don’t Care!
Variables can also begin with an underscore
Any such variable is one whose actual value
doesn’t matter: you “don’t care” what it is,
so you didn’t give it a real name
Used for aguments or parameters whose
instantiated value is of no consequence

 ?- is_older(george, _).

Succeeds, Indicating that there does exist an
argument which will cause the query to be
true, but the value is not returned

 Chapter 15: LP Foundations, Prolog 36

Prolog Lists
Lists are represented by [...]
An explicit list [a,b,c], or [A,B,C]
As in LISP, we can identify the head and tail
of a list through the use of the punctuation
symbol “|” (vertical bar) in a list pattern:

[H|T] or [_|T]
There are no explicit functions to select the
head or tail (such as CAR and CDR)
Instead, lists are broken down by using
patterns as formal arguments to a predicate

 Chapter 15: LP Foundations, Prolog 37

Sample List Functions
/*Membership*/
member(H, [H | _]).
member(H, [_ | T]) :- member(H, T).

/*Concatenation of two lists*/
concat([], L, L).
concat([H | T], L, [H | U]) :- concat(T, L, U).

/*Reverse a list*/
reverse([], []).
reverse([H | T], L) :-reverse(T, R), concat(R, [H], L).

/*Equality of Lists*/
equal_lists([], []).
equal_lists([H1 | T1], [H2 | T2]) :- H1 = H2,

equal_lists(T1, T2).

 Chapter 15: LP Foundations, Prolog 38

A Logic Puzzle
Three children, Anne, Brian, and Mary, live on the
same street
Their last names are Brown, Green, and White
One is 7, one is 9, and one is 10.

We know:
1. Miss Brown is three years older than Mary.
2. The child whose name is White is nine years old.

What are the children's ages?

 Chapter 15: LP Foundations, Prolog 39

State the Facts
/*----- Facts -----*/
child(anne).
child(brian).
child(mary).
age(7).
age(9).
age(10).
house(brown).
house(green).
house(white).
female(anne).
female(mary).
male(brian).

 Chapter 15: LP Foundations, Prolog 40

Define the Rules

/*----- Rules -----*/
clue1(Child, Age, House, Marys_Age) :-
 House \= brown;
 House = brown, female(Child),
 Marys_Age =:= Age - 3.

clue2(_Child, Age, House) :-
 House \= white ; Age = 9.

are_unique(A, B, C) :-
 A \= B, A \= C, B \= C.

 Chapter 15: LP Foundations, Prolog 41

Guess A Solution
guess_child(Child, Age, House) :-
 child(Child), age(Age), house(House).

solution(Annes_Age, Annes_House,
 Brians_Age, Brians_House,

 Marys_Age, Marys_House) :-
 /* Guess an answer */
 guess_child(anne, Annes_Age, Annes_House),
 guess_child(brian, Brians_Age, Brians_House),
 guess_child(mary, Marys_Age, Marys_House),
 are_unique(Annes_Age, Brians_Age, Marys_Age),
 are_unique(Annes_House, Brians_House,

Marys_House),
 …

 Chapter 15: LP Foundations, Prolog 42

Test It For Veracity
Solution(…) :- …
 /* filter against clue 1 */
 clue1(anne, Annes_Age, Annes_House,

Marys_Age),
 clue1(brian, Brians_Age, Brians_House,

Marys_Age),
 clue1(mary, Marys_Age, Marys_House,

Marys_Age),

 /* filter against clue 2 */
 clue2(anne, Annes_Age, Annes_House),
 clue2(brian, Brians_Age, Brians_House),
 clue2(mary, Marys_Age, Marys_House).

 Chapter 15: LP Foundations, Prolog 43

Prolog Issues
Efficiency—theorem proving can be
extremely time consuming

Resolution order control
Processing is always top to bottom, left to right.
Indirect control by your choice of ordering
Uses backward chaining; sometimes forward
chaining is better
Prolog always searches depth-first, though
sometimes breadth-first can work better

 Chapter 15: LP Foundations, Prolog 44

Prolog Limitations

“Closed World”—the only truth is that
recorded in the database

Negation Problem—failure to prove is not
equivalent to logically false

not(not(some_goal)) is not equivalent to
some_goal

