
1

FP Foundations, Scheme

In Text: Chapter 14

 Chapter 14: FP Foundations, Scheme 2

Mathematical Functions

Def: A mathematical function is a mapping of
members of one set to another set
The “input” set is called the domain
The “output” set is called the range
Each input maps to exactly one output

 Chapter 14: FP Foundations, Scheme 3

Scheme Syntax Basics

Case-insensitive
Data Types:

Atoms: identifiers, symbols, numbers
Lists (S-expressions)

List form: parenthesized collections of sublists
and/or atoms
(a b c d)
(a (b c) d e)

All lists are internally represented by singly-
linked chains where each node has 2
pointers (think “data” and “next”)

 Chapter 14: FP Foundations, Scheme 4

Interal List Representation

Single atom:

List of atoms: (a b c)

List containing list:
(a (b c) d)

atom

a b c

a d

b c

 Chapter 14: FP Foundations, Scheme 5

Primitive Functions
1. Arithmetic: +, -, *, /, abs, sqrt

(+ 5 2)
(* 47 (+ (- 5 3) 2))

2. QUOTE takes one parameter; returns the parameter
without evaluation
Parameters to a function are evaluated before
applying the function; use QUOTE to prevent it when
inappropriate
QUOTE can be abbreviated with the apostrophe
prefix operator

'(a b)
(quote (a b))

 Chapter 14: FP Foundations, Scheme 6

Primitive Functions (cont.)

3. CAR takes a list parameter; returns the first
element of that list

(car '(a b c)) yields a
(car '((a b) c d)) yields (a b)

4. CDR takes a list parameter; returns the list
after removing its first element

(cdr '(a b c)) yields (b c)
(cdr '((a b) c d)) yields (c d)

 Chapter 14: FP Foundations, Scheme 7

Primitive Functions (cont.)

5. CONS takes two parameters; returns a new
list that includes the first parameter as its
first element and the second parameter as
the remainder

(cons 'a '(b c)) returns (a b c)

6. LIST takes any number of parameters;
returns a list with the parameters as
elements

(list 'a '(b c)) returns (a (b c))

 Chapter 14: FP Foundations, Scheme 8

Predicate Functions

A predicate is a function returning a boolean
value
#T is true and (), the empty list, is false
By convention, Scheme predicates have
names that end in a “?”

1. EQUAL? takes two parameters; it returns #T
if both parameters are “the same”; works on
about everything

 Chapter 14: FP Foundations, Scheme 9

Predicate Functions (cont.)

2. EQV? (atom equality) takes two symbolic
parameters; it returns #T if both parameters
are atoms and the two are the same

(eqv? 'a 'a) yields #t
(eqv? 'a '(a b)) yields ()

EQV? is unreliable if used on lists
3. EQ? (pointer equality) is like EQV?, but is also

unreliable on numbers, characters, and a
few other special cases

 Chapter 14: FP Foundations, Scheme 10

Predicate Functions (cont.)

4. LIST? takes one parameter; it returns #T if
the parameter is an list; otherwise ()

5. NULL? takes one parameter; it returns #T if
the parameter is the empty list; otherwise ()

6. Numeric Predicate Functions: =, >, <, >=, <=,
even?, odd?, zero?, positive?, negative?

 Chapter 14: FP Foundations, Scheme 11

Other Useful Functions

(write expression)
(write-string expression)
(newline)
(read-string stop-character-set)

 Chapter 14: FP Foundations, Scheme 12

Lambda Expressions

A lambda expression describes a “nameless”
function
Specifies both the parameter(s) and the
mapping
Consider this function cube (x) = x * x * x
Corresponding lambda expr: ?(x) x * x * x
Can be “applied” to parameter(s) by placing
the parameter(s) after the expression

 e.g. (?(x) x * x * x)(3)
The above application evaluates to 27

 Chapter 14: FP Foundations, Scheme 13

Lambda Expressions in Scheme

Based on lambda notation
(lambda (l) (car (car l)))

L is called a “bound variable”; think of it as a
formal parameter name
Lambda expressions can be applied

((lambda (l) (car (car l))) '((a b) c d))

 Chapter 14: FP Foundations, Scheme 14

A Function for Constructing Functions

DEFINE has two forms:
1. To bind a symbol to an expression:

(define pi 3.141593)
(define two_pi (* 2 pi))

2. To bind names to lambda expressions
 (define (cube x)
 (* x x x)
)
 Example use: (cube 4)

 Chapter 14: FP Foundations, Scheme 15

Functional Forms

Def: A higher-order function, or functional
form, is one that:

Takes function(s) as parameter(s), or
Yields a function as its result, or
Both

 Chapter 14: FP Foundations, Scheme 16

Function Composition

A functional form that takes two functions as
parameters and yields a function whose
result is a function whose value is the first
actual parameter function applied to the
result of the application of the second
Form: h ≡ f g
Which means: h (x) ≡ f (g (x))

°

 Chapter 14: FP Foundations, Scheme 17

Construction

A functional form that takes a list of
functions as parameters and yields a list of
the results of applying each of its parameter
functions to a given parameter
Form: [f, g]
For f (x) ≡ x * x * x and g (x) ≡ x + 3,

[f, g] (4) yields (64, 7)

 Chapter 14: FP Foundations, Scheme 18

Apply-to-All

A functional form that takes a single function
as a parameter and yields a list of values
obtained by applying the given function to
each element of a list of parameters
Form: α
For h (x) ≡ x * x * x
α(h, (3, 2, 4)) yields (27, 8, 64)
“map” in Scheme is a very flexible version of
this

 Chapter 14: FP Foundations, Scheme 19

Scheme Evaluation Process

1. Parameters are evaluated, in no particular
order

2. The values of the parameters are
substituted into the function body

3. The function body is evaluated
4. The value of the last expression in the body

is the value of the function

(Special forms use a different evaluation
process)

 Chapter 14: FP Foundations, Scheme 20

Control Flow: Selection

1. Selection: the special form, IF
 (IF predicate then_exp else_exp)

 (if (not (zero? count))
 (/ sum count)
 0
)

 Chapter 14: FP Foundations, Scheme 21

Control Flow: Multi-Way Selection

2. Multiple selection: the special form, COND
 (COND
 (predicate_1 expr {expr})
 (predicate_1 expr {expr})
 ...
 (predicate_1 expr {expr})
 (ELSE expr {expr})
)

Returns the value of the last expr in the first
pair whose predicate evaluates to true

 Chapter 14: FP Foundations, Scheme 22

Introducing Locals: Let

3. Internal definitions: the special form, LET
 (let ((x ‘(a b c))
 (y ‘(d e f)))
 (cons x y)
)

Introduces a list of local names (use define
for top-level entities, but use let for internal
definitions)
Each name is given a value
Use let* if later values depend on earlier ones

 Chapter 14: FP Foundations, Scheme 23

Control Flow: Named Let
2. Recursive-style looping: the special form,

named LET
 (COND
 (predicate_1 expr {expr})
 (predicate_1 expr {expr})
 ...
 (predicate_1 expr {expr})
 (ELSE expr {expr})
)

Returns the value of the last expr in the first
pair whose predicate evaluates to true

 Chapter 14: FP Foundations, Scheme 24

Example Scheme Functions: member

member takes an atom and a list; returns #T
if the atom is in the list; () otherwise

 (define (member atm lis)
 (cond
 ((null? lis) '())
 ((equal? atm (car lis)) #t)
 (else (member atm (cdr lis)))
)
)

 Chapter 14: FP Foundations, Scheme 25

Example Scheme Fns: flat-equal
flat-equal takes two simple lists as
parameters; returns #T if the two simple lists
are equal; () otherwise

 (define (flat-equal lis1 lis2)
 (cond
 ((null? lis1) (null? lis2))
 ((null? lis2) '())
 ((eqv? (car lis1) (car lis2))
 (flat-equal (cdr lis1) (cdr lis2)))
 (else '())
)
)

 Chapter 14: FP Foundations, Scheme 26

Example Scheme Fns: equal
equal takes two lists as parameters; returns #T if the
two general lists are equal; () otherwise

 (define (equal lis1 lis2)
 (cond
 ((not (list? lis1)) (eqv? lis1 lis2))
 ((not (list? lis2)) '())
 ((null? lis1) (null? lis2))
 ((null? lis2) '())
 ((equal (car lis1) (car lis2))
 (equal (cdr lis1) (cdr lis2)))
 (else '())
)
)

 Chapter 14: FP Foundations, Scheme 27

Example Scheme Fns: append
append takes two lists as parameters; returns the
first parameter list with the elements of the second
parameter list appended at the end

 (define (append lis1 lis2)
 (cond
 ((null? lis1) lis2)
 (else
 (cons
 (car lis1)
 (append (cdr lis1) lis2)))
)
)

 Chapter 14: FP Foundations, Scheme 28

Creating Functional Forms
Composition: the previous examples have
used it
Apply to All: one form in Scheme is mapcar
Applies the given function to all elements of
the given list; result is a list of the results

 (define (mapcar fun lis)
 (cond
 ((null? lis) '())
 (else (cons (fun (car lis))
 (mapcar fun (cdr lis))))
))

 Chapter 14: FP Foundations, Scheme 29

Interpretive features
One can define a function that builds Scheme code
and requests its interpretation
The interpreter is a user-available function, EVAL
Suppose we have a list of numbers that must be
added together

 (define (adder lis)
 (cond
 ((null? lis) 0)
 (else (eval (cons '+ lis)))
))

The parameter is a list of numbers to be added;
adder inserts a + operator and interprets the
resulting list

 Chapter 14: FP Foundations, Scheme 30

Imperative Features in Scheme

“Functions” that modify/change a data
structure are called mutators
By convention, mutator names end in “!”
SET! binds or rebinds a value to a name
SET-CAR! replaces the car of a list
SET-CDR! replaces the cdr part of a list

 Chapter 14: FP Foundations, Scheme 31

Common LISP
A combination of many of the features of the
popular dialects of LISP around in the early 1980s
A large and complex language--the opposite of
Scheme
Includes:

records
arrays
complex numbers
character strings
powerful i/o capabilities
packages with access control
imperative features like those of Scheme
iterative control statements

 Chapter 14: FP Foundations, Scheme 32

Standard ML
A static-scoped functional language with syntax
that is closer to Pascal than to LISP
Uses type declarations, but also does type
inferencing to determine the types of undeclared
variables (See Chapter 4)
Strongly typed (whereas Scheme has latent typing)
and has no type coercions
Includes exception handling and a module facility
for implementing abstract data types
Includes lists and list operations
The val statement binds a name to a value (similar
to DEFINE in Scheme)

 Chapter 14: FP Foundations, Scheme 33

SML Function Declarations
fun function_name (formal_parameters) =

 function_body_expression;

fun cube (x : int) = x * x * x;

List-based operations can be polymorphic, using
type inferencing
Functions that use arithmetic or relational
operators cannot be polymorphic

 Chapter 14: FP Foundations, Scheme 34

Haskell
Similar to ML

syntax, static scoped, strongly typed, type
inferencing

Different from ML (and most other functional
languages) in that it is PURELY functional

 no variables, no assignment statements, and no
side effects of any kind

Most Important Features
Uses lazy evaluation (evaluate no subexpression
until the value is needed)
Has “list comprehensions,” which allow it to deal
with infinite lists

