
1

Arithmetic Expressions

In Text: Chapter 6

 Chapter 6: Arithmetic Expressions 2

Outline

What is a type?
Primitives
Strings
Ordinals
Arrays
Records
Sets
Pointers

 Chapter 6: Arithmetic Expressions 3

Arithmetic Expressions
Their evaluation was one of the motivations for the
development of the first programming languages
Arithmetic expressions consist of operators,
operands, parentheses, and function calls
Design issues for arithmetic expressions:
What are the operator precedence rules?
What are the operator associativity rules?
What is the order of operand evaluation?
Are there restrictions on operand evaluation side
effects?
 Does the language allow user-defined operator
overloading?
What mode mixing is allowed in expressions?

 Chapter 6: Arithmetic Expressions 4

Operators

A unary operator has one operand
A binary operator has two operands
A ternary operator has three operands

Operator precedence and operator
associativity are important considerations

 Chapter 6: Arithmetic Expressions 5

Operator Precedence
The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated (“adjacent” means they are separated by
at most one operand)
Typical precedence levels

 1. parentheses
 2. unary operators
 3. ** (if the language supports it)
 4. *, /
 5. +, -

Can be overridden with parentheses

 Chapter 6: Arithmetic Expressions 6

Operator Associativity
The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated
Typical associativity rules:

Left to right, except **, which is right to left
Sometimes unary operators associate right to
left (e.g., FORTRAN)

APL is different; all operators have equal
precedence and all operators associate right to left
Can be overridden with parentheses

 Chapter 6: Arithmetic Expressions 7

Operand Evaluation Order

The process:
1. Variables: just fetch the value
2. Constants: sometimes a fetch from memory;

sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

4. Function references: The case of most interest!
Order of evaluation is crucial

 Chapter 6: Arithmetic Expressions 8

Side Effects

Functional side effects - when a function
changes a two-way parameter or a non-
local variable
The problem with functional side effects:

When a function referenced in an expression
alters another operand of the expression

Example, for a parameter change:
 a = 10;
 b = a + fun(&a);
 /* Assume that fun changes its param */

 Chapter 6: Arithmetic Expressions 9

Solutions for Side Effects
Two Possible Solutions to the Problem:

1. Write the language definition to disallow
functional side effects

No two-way parameters in functions
No non-local references in functions
Advantage: it works!
Disadvantage: Programmers want the flexibility
of two-way parameters (what about C?) and
non-local references

2. Write the language definition to demand
that operand evaluation order be fixed

Disadvantage: limits some compiler optimizations

 Chapter 6: Arithmetic Expressions 10

Conditional Expressions

C, C++, and Java (?:)

average = (count == 0) ? 0 : sum / count;

 Chapter 6: Arithmetic Expressions 11

Operator Overloading
Some is common (e.g., + for int and float)
Some is potential trouble (e.g., * in C and
C++)
Loss of compiler error detection (omission
of an operand should be a detectable error)
Can be avoided by introduction of new
symbols (e.g., Pascal’s div)
C++ and Ada allow user-defined overloaded
operators
Potential problems:

Users can define nonsense operations
Readability may suffer

 Chapter 6: Arithmetic Expressions 12

Implicit Type Conversions

A narrowing conversion is one that converts
an object to a type that cannot include all of
the values of the original type
A widening conversion is one in which an
object is converted to a type that can
include at least approximations to all of the
values of the original type
A mixed-mode expression is one that has
operands of different types
A coercion is an implicit type conversion

 Chapter 6: Arithmetic Expressions 13

Disadvantages of Coercions

They decrease the type error detection
ability of the compiler
In most languages, all numeric types are
coerced in expressions, using widening
conversions
In Modula-2 and Ada, there are virtually no
coercions in expressions

 Chapter 6: Arithmetic Expressions 14

Explicit Type Conversions

Often called casts
Ada example:

 FLOAT(INDEX) -- INDEX is INTEGER type

C example:
 (int) speed /* speed is float type */

 Chapter 6: Arithmetic Expressions 15

Errors in Expressions

Caused by:
Inherent limitations of arithmetic (e.g. division
by zero)
Limitations of computer arithmetic (e.g.,
overflow)

Such errors are often ignored by the run-
time system

 Chapter 6: Arithmetic Expressions 16

Relational Expressions

Use relational operators and operands of
various types
Evaluate to some boolean representation
Operator symbols used vary somewhat
among languages (!=, /=, .NE., <>, #)

 Chapter 6: Arithmetic Expressions 17

Boolean Expressions
Operands are boolean and the result is boolean
Operators:

C has no boolean type—it uses int, where 0 is false
and nonzero is true
One odd characteristic of C’s expressions: a < b < c is
legal, but the result is not what you might expect

xor
not!not.NOT.
or||or.OR.

and&&and.AND.
AdaCFORTRAN 90FORTRAN 77

 Chapter 6: Arithmetic Expressions 18

Precedence of All Operators
Pascal: not, unary -

 *, /, div, mod, and
 +, -, or
 relops

Ada: **
 *, /, mod, rem
 unary -, not
 +, -, &
 relops
 and, or, xor

C, C++, and Java have > 50 operators and 17 different
precedence levels

 Chapter 6: Arithmetic Expressions 19

Short Circuit Evaluation

Stop evaluating operands of logical
operators once result is known
Pascal: does not use short-circuit evaluation
Problem:

 index := 1;
 while (index <= length) and
 (LIST[index] <> value) do
 index := index + 1

 Chapter 6: Arithmetic Expressions 20

Short Circuit Evaluation (cont.)
C, C++, and Java: use short-circuit evaluation for the
usual Boolean operators (&& and ||), but also
provide bitwise operators that are not short circuit
(& and |)
Ada: programmer can specify either (short-circuit
is specified with and then and or else)
FORTRAN 77: short circuit, but any side-affected
place must be set to undefined
Short-circuit evaluation exposes the potential
 problem of side effects in expressions
 C Example: (a > b) || (b++ / 3)

 Chapter 6: Arithmetic Expressions 21

Assignment Statements

The operator symbol:
= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLs, Pascal, Modula-2, Ada
= can be bad if it is overloaded for the
relational operator for equality (e.g. in PL/I,
A = B = C;)
Note difference from C

 Chapter 6: Arithmetic Expressions 22

More Complicated Assignments
1. Multiple targets (PL/I)

A, B = 10

2. Conditional targets (C, C++, and Java)
(first = true) ? total : subtotal = 0

3. Compound assignment operators (C, C++, and Java)
sum += next;

4. Unary assignment operators (C, C++, and Java)
a++;
C, C++, and Java treat = as an arithmetic binary operator
a = b * (c = d * 2 + 1) + 1
This is inherited from ALGOL 68

 Chapter 6: Arithmetic Expressions 23

Assignment as an Expression

In C, C++, and Java, the assignment
statement produces a result
So, they can be used as operands in
expressions

while ((ch = getchar() != EOF) { ... }
Disadvantage: another kind of expression
side effect

 Chapter 6: Arithmetic Expressions 24

Mixed-Mode Assignment
In FORTRAN, C, and C++, any numeric value can be
assigned to any numeric scalar variable; whatever
conversion is necessary is done
In Pascal, integers can be assigned to reals, but
reals cannot be assigned to integers (the
programmer must specify whether the conversion
from real to integer is truncated or rounded)
In Java, only widening assignment coercions are
done
In Ada, there is no assignment coercion

