Data Types

In Text: Chapter 5

Outline

B What is a type?
B Primitives

B Strings

B Ordinals

B Arrays

Bm Records

m Sets

B Pointers

B Chapter 5: Data Types & 2

Data Types

_IRYY/e components:
B Set of objects in the type (domain of values)
m Set of applicable operations

B May be determined:
m Statically (at compile time)
® Dynamically (at run time)

B A language’s data types may be:
m Built-in
B Programmer-defined

B A declaration explicitly associates an
iIdentifier with a type (and thus
representation)

B Chapter 5: Data Types & 3

} Design Issues for All Data Types

B How is the domain of values specified?

B What operations are defined and how are
they specified?

B What is the syntax of references to
variables?

B Chapter 5: Data Types & 4

Primitive Data Types

)

B A primitive type is one that is not defined In
terms of other data types

m Typical primitives include:
B Boolean
m Character
B Integral type(s)
B Fixed point type(s)
B Floating point type(s)

B Chapter 5: Data Types & 5

Boolean

)

B Used for logical decisions/conditions

B Could be implemented as a bit, but usually as
a byte

B Advantage: readability

B Chapter 5: Data Types & 6

)

Integer

B Almost always an exact reflection of the
hardware, so the mapping is trivial

B There may be as many as eight different
Integer types in a language

B Each such integer type usually maps to a
different representation supported by the
machine

B Chapter 5: Data Types & 7

} Fixed Point (Decimal) Types

B Originated with business applications
(money)

m Store a fixed number of decimal digits
(coded)

B Advantage: accuracy

B Disadvantages: limited range, wastes
memory

B Chapter 5: Data Types & 8

Floating Point Types

B Model real numbers, but only as approximations

® |n any particular numeric domain, the model numbers are the
set of exactly representable numbers

B Languages for scientific use support at least two floating-
point types; sometimes more

m Usually exactly like the hardware, but not always; some
languages allow accuracy specs in code (e.g., Ada):

type Speed is
digits 7 range 0.0..1000.0;
type Voltage is
delta 0.1 range -12.0..24.0;
B See book for representation (p. 199)

B Chapter 5: Data Types & 9

Character String Types

)

B Values are sequences of characters

B Design issues:

m Is it a primitive type or just a special kind of
array?

m Is the length of objects fixed or variable?

B Operations:
B Assignment
m Comparison (=, >, etc.)
®m Concatenation
B Substring reference

®m Pattern matching
B Chapter 5: Data Types & 10

Examples of String Support

)

B Pascal

B Not primitive; assignment and comparison only (of packed
arrays)
B Ada, FORTRAN 77, FORTRAN 90 and BASIC
B Somewhat primitive

B Assignment, comparison, concatenation, substring
reference

® FORTRAN has an intrinsic for pattern matching
B Examples (in Ada)

® N :=N1 & N2 (catenation)

® N(2..4) (substring reference)

m C (and C++ for some people)
® Not primitive

B Use char arrays and a library of functions that provide
operations

B Chapter 5: Data Types & 11

)

Other String Examples

B SNOBOL4 (a string manipulation language)
® Primitive

B Many operations, including elaborate pattern
matching

m Perl

B Patterns are defined in terms of regular
expressions

m A very powerful facility!
m /[A-Za-z][A-Za-z\d]*/
®m Java and C++ (with std library)

m String class (not array of char)
B Chapter 5: Data Types & 12

String Length Options

)

B Fixed (static) length (fixed size determined at
allocation)
®m FORTRAN 77, Ada, COBOL
m A FORTRAN 90 example:

CHARACTER (LEN = 15) NAME;

B Limited dynamic length (fixed maximum size at
allocation, but actual contents may be less)

B C and C++ char arrays: actual length is indicated by a null
character

® Dynamic length (may grow and shrink after
allocation)
m SNOBOL4, Perl

B Chapter 5: Data Types & 13

Evaluation of String Types

)

B Supporting strings is an aid to readability and
writability

B As a primitive type with fixed length, they are
Inexpensive to provide—why not have them?

® Dynamic length is nice, but is it worth the expense?
B Implementation:
B Static length—compile-time descriptor

®m Limited dynamic length—may need a run-time
descriptor for length (but not in C and C++)

B Dynamic length—need run-time descriptor,;
allocation/deallocation is the biggest

Implementation problem
B Chapter 5: Data Types & 14

} User-Defined Ordinal Types

® An ordinal type is one In which the
range of possible values can be easily
assoclated with the set of positive
Integers

B Two common Kinds:
B Enumeration types
B Subrange types

B Chapter 5: Data Types & 15

Enumeration Types

B The user enumerates all of the possible values,
which are symbolic constants

® Design Issue: Should a symbolic constant be allowed
to be in more than one type definition?
m Examples:

B Pascal—cannot reuse constants; they can be used for array
subscripts, for variables, case selectors; no input or
output; can be compared

B Ada—constants can be reused (overloaded literals); can be
used as in Pascal; input and output supported

m C and C++—like Pascal, except they can be input and output
as integers

B Java does not include an enumeration type

B Chapter 5: Data Types & 16

)

Subrange Types

B An ordered, contiguous subseguence of another
ordinal type

® Design Issue: How can they be used?
m Examples:

B Pascal—subrange types behave as their parent types; can
be used as for variables and array indices

type pos =0 .. MAXINT;

B Ada—subtypes are not new types, just constrained existing

types (so they are compatible); can be used as in Pascal,
plus case constants

subtype Pos Type is
Integer range O ..Integer’'Last;

B Chapter 5: Data Types & 17

Evaluation of Ordinal Types

B Aid readability and writeability

B Improve reliability—restricted ranges add
error detection abilitiy

B Implementation of user-defined ordinal
types:
B Enumeration types are implemented as integers

B Subrange types are the parent types, code may
be inserted (by the compiler) to restrict
assignments to subrange variables

B Chapter 5: Data Types & 18

Arrays

)

B An array Is an aggregate of homogeneous
data elements in which an individual
element is identified by its position

B Design Issues:
® What types are legal for subscripts?
m Are subscript values range checked?
B When are subscript ranges bound?
B When does allocation take place?
B What is the maximum number of subscripts?
m Can array objects be initialized?

®m Are any kind of slices allowed?
B Chapter 5: Data Types & 19

Array Indexing

)

B Indexing Is a mapping from indices to
elements

B Syntax
B FORTRAN, PL/I, Ada use parentheses
B Most others use brackets

B Chapter 5: Data Types & 20

Array Subscript Types

)

B \What type(s) are allowed for defining
array subscripts?

B FORTRAN, C—Int only

m Pascal—any ordinal type (int, boolean,
char, enum)

m Ada—int or enum (including boolean
and char)

m Java - Integer types only

B Chapter 5: Data Types & 21

} Four Categories of Arrays

B Four categories, based on subscript
binding and storage binding:
m Static
B Fixed stack-dynamic
m Stack-dynamic
B Heap-dynamic

B Chapter 5: Data Types &

22

)

Static Arrays

B Range of subscripts and storage
bindings are static

m Examples: FORTRAN 77, global arrays In
C++, some arrays in Ada
m Advantage:

B Execution efficiency (no allocation or
deallocation)

B Disadvantages:
B Size must be known at compile time
m Bindings are fixed for entire program

B Chapter 5: Data Types & 23

} Fixed Stack-Dynamic Arrays

B Range of subscripts is statically bound, but
storage is bound at elaboration time

B Examples: Pascal locals, C/C++ locals that are
not static

B Advantages:
B Space efficiency
B Supports recursion
B Disadvantage.:
B Must know size at compile time

B Chapter 5: Data Types & 24

)

Stack-Dynamic Arrays

B Range and storage are dynamic, but fixed
from then on for the variable’s lifetime

B Examples: Ada locals in a procedure or block
B Advantage:

B Flexibility—size need not be known until
the array Is about to be used

B Disadvantage.:

B Once created, array size Is fixed for
lifetime

B Chapter 5: Data Types & 25

)

Heap-Dynamic Arrays

m Subscript range and storage bindings
are dynamic and not fixed

m Examples: FORTRAN 90, APL, Perl
m Advantage:
m Ultimate In flexibility

m Disadvantages:
B More space required
B Run-time overhead

B Chapter 5: Data Types & 26

} Number of Array Subscripts

® FORTRAN I allowed up to three
m FORTRAN 77 allows up to seven

mC, C++, and Java allow just one, but
elements can be arrays

B Others—no limit

B Chapter 5: Data Types & 27

Array Initialization

® Usually just a list of values that are put in the array in the
order in which the array elements are stored in memory

m Examples:

B FORTRAN—uses the DATA statement, or put the valuesin/ ...
/ on the declaration

m C and C++—put the values in braces; can let the compiler count
them (int stuff [] ={2, 4, 6, 8},)

® Ada—positions for the values can be specified.:
SCORE : array (1..14,1..2) .=
(1=>(24, 10),2=>(10,7),
3 =>(12, 30), others => (0, 0));
m Pascal and Modula-2 do not allow array initialization

B Chapter 5: Data Types & 28

Array Operations

)

B APL has lots (see book p. 216-217)

m Ada

B Assignment; RHS can be an aggregate,
array name, or slice (LHS can also be a
slice)

m Catenation for single-dimensioned arrays
m Equality/inequality operators (= and /=)

® FORTRAN 90
B Intrinsics (subprograms) for a wide

variety of array operations (e.g., matrix
multiplication, vector dot product)

B Chapter 5: Data Types & 29

)

Array Slices

B Aslice is some substructure of an array;
nothing more than a referencing
mechanism

B Slice Examples:
® FORTRAN 90
INTEGER MAT (1:4,1:4)
MAT(1: 4, 1)—the first column
MAT(2, 1:4)—the second row
B Ada—single-dimensioned array slice:
LIST(4..10)

B Chapter 5: Data Types & 30

Implementation of Arrays

)

B Access function maps subscript
expressions to an address in the array

B Row major (by rows) or column major
order (by columns)

AmASa SR EL e

apggpuuusajusunnsajs

5 - MMM

B Chapter 5: Data Types & 31

)

Assoclative Arrays

B An associative array Is an unordered
collection of data elements that are
Indexed by an equal number of values
called keys

m Design Issues:

m\What is the form of references to
elements?

m |s the size static or dynamic?

B Chapter 5: Data Types & 32

)

Perl Associative Arrays

B Names begin with %

B Literals are delimited by parentheses

%hi_temps = ("Monday" =>77,
"Tuesday" =>79,...);

B Subscripting is done using braces and
keys
$hi_temps{"Wednesday'} = 83;

B Elements can be removed with delete
delete $hi_temps{"Tuesday'};

B Chapter 5: Data Types & 33

Records

B Arecord is a possibly heterogeneous
aggregate of data elements in which
the individual elements are identified
by names

m Design Issues:
®\What is the form of references?
® \What unit operations are defined?

B Chapter 5: Data Types & 34

Record Definition Syntax

B COBOL uses level numbers to show
nested records: others use recursive

definitions
In C: In Ada:
typedef struct { type MyRecord is record
Int fieldl,; fieldl : Integer;
float field2; field2 : Float;

} MyRecord; end record,;

B Chapter 5: Data Types & 35

Record Field References

m COBOL:

field name OF record name_1OF ... OF
record name_n
® Others (dot notation):

record name_l.record name 2. ...
.record name n.field name

m Fully qualified references must include all record
names

m Elliptical references allow leaving out record
names as long as the reference is unambiguous

B Pascal and Modula-2 provide a with clause to

abbreviate references
B Chapter 5: Data Types & 36

)

Record Operations

B Assignment

m Pascal, Ada, and C++ allow it if the types are identical
B In Ada, the RHS can be an aggregate

® [nitialization
m Allowed in Ada, using an aggregate

B Comparison
B In Ada, = and /=, one operand can be an aggregate

® MOVE CORRESPONDING

B In COBOL - it moves all fields in the source record to fields
with the same names in the destination record

B Chapter 5: Data Types & 37

} Comparing Records and Arrays

B Access to array elements is slower
than access to record fields, because
subscripts are dynamic (field names
are static)

B Dynamic subscripts could be used with
record field access, but it would
disallow type checking and be much
slower

B Chapter 5: Data Types & 38

)

Unions

® A union is atype whose variables are
allowed to store different type values
at different times during execution

B Design Issues for unions:

®m \What kind of type checking, if any, must be
done?

B Should unions be integrated with records?

B Chapter 5: Data Types & 39

)

Union Examples

B FORTRAN—wiIth EQUIVALENCE

m Algol 68—discriminated unions
B Use a hidden tag to maintain the current
type
B Tag is implicitly set by assignment

B References are legal only in conformity
clauses (see p. 231)

B This runtime type selection is a safe
method of accessing union objects

B Chapter 5: Data Types & 40

More Union Examples

)

m Pascal—both discriminated and
nondiscriminated unions

type intreal =

record tagg : Boolean of
true : (blint : iInteger);
false : (blreal : real);

end;

B Chapter 5: Data Types & 41

Union Type-Checking Problems

B Problem with Pascal’s design: type checking
IS Ineffective

B Reasons:
m User can create inconsistent unions (because the
tag can be individually assigned)

var blurb : intreal;
X : real,
blurb.tagg = true; {itis an integer}
blurb.blint :=47; {ok}
blurb.tagg :=false {itisareal
X := blurb.blreal; {oops!}

m Also, the tag Is optional!

B Chapter 5: Data Types & 42

} Ada Discriminated Unions

B Reasons they are safer than Pascal &
Modula-2:
B Tag must be present

m All assignments to the union must include
the tag value—tag cannot be assigned by
itself

m It is impossible for the user to create an
Inconsistent union

B Chapter 5: Data Types & 43

Free Unions

B C and C++ have free unions (no tags)
®m Not part of their records

®m No type checking of references

m Java has neither records nor unions

B Chapter 5: Data Types & 44

)

Evaluation of Unions

m Useful
m Potentially unsafe in most languages
m Ada, Algol 68 provide safe versions

B Chapter 5: Data Types & 45

Sets

B Asetis atype whose variables can
store unordered collections of distinct
values from some ordinal type

m Design Issue:

B \What is the maximum number of elements
IN the base type of a set?

B Chapter 5: Data Types & 46

)

Set Examples

B Pascal—no maximum size in the
language definition (not portable,
poor writability iIf max is too small)

B Operations: union (+), intersection (*),
difference (-), =, <>, superset (>=), subset
(<=), In

B Chapter 5: Data Types & 47

)

Set Examples (cont.)

® Modula-2 and Modula-3

B Additional operations: INCL, EXCL, /
(symmetric set difference (elements in
one but not both operands))

B Ada—does not include sets, but defines
IN as set membership operator for all
enumeration types and subrange
expressions

B Java includes a class for set operations

B Chapter 5: Data Types & 48

)

Evaluation of Sets

m If a language does not have sets, they
must be simulated, either with
enumerated types or with arrays

B Arrays are more flexible than sets, but
have much slower operations

B Set implementation:

B Usually stored as bit strings and use
logical operations for the set operations

B Chapter 5: Data Types & 49

)

Pointers

m A pointer type Is a type in which the
range of values consists of memory
addresses and a special value, nil (or
null)

m Uses:

B Addressing flexibility
® Dynamic storage management

B Chapter 5: Data Types & 50

)

Pointer Design Issues

B \What is the scope and lifetime of pointer
variables?

B What is the lifetime of heap-dynamic
variables?

B Are pointers restricted to pointing at a
particular type?

B Are pointers used for dynamic storage
management, indirect addressing, or both?

B Should a language support pointer types,
reference types, or both?

B Chapter 5: Data Types & 51

}Fundamental Pointer Operations

® Assignment of an address to a pointer

B References (explicit versus implicit
dereferencing)

B Chapter 5: Data Types & 52

} Problems with Pointers

®m Dangling pointers

B Memory leaks

B Double-deallocation/heap corrupting
m Aliasing

B Chapter 5: Data Types & 53

)

Dangling Pointers

B A pointer points to a heap-dynamic
variable that has been deallocated

E Creating one:

m Allocate a heap-dynamic variable and set
a pointer to point at it

B Set a second pointer to the value of the
first pointer

B Deallocate the heap-dynamic variable
using the first pointer

B Chapter 5: Data Types & 54

Memory Leaks

)

B Lost heap-dynamic variables (garbage):

B A heap-dynamic variable that is no longer
referenced by any program pointer

® Creating one:

m Pointer pl is set to point to a newly created
heap-dynamic variable

m plis later set to point to another newly created
heap-dynamic variable

B The process of losing heap-dynamic variables is
called memory leakage

B Chapter 5: Data Types & 55

)

Double Deallocation

B \When a heap-dynamic object is
explicitly deallocated twice

m Usually corrupts the data structure(s)
the run-time system uses to maintain
free memory blocks (the heap)

B A special case of dangling pointers

B Chapter 5: Data Types & 56

)

Allasing

® \When two pointers refer to the same
address

B Pointers need not be in the same program
unit
B Changes made through one pointer affect

the behavior of code referencing the other
pointer

B \When unintended, may cause
unpredictability, loss of locality of reasoning

B Chapter 5: Data Types & 57

)

Pointer Examples

m Pascal: used for dynamic storage
management only

m Explicit dereferencing
® Dangling pointers and memory leaks are possible

® Ada: a little better than Pascal and
Modula-2

® Implicit dereferencing
m All pointers are initialized to null

m Similar dangling pointer and memory leak
problems for typical implementations

B Chapter 5: Data Types & 58

Pointer Examples (cont.)

m C and C++: for both dynamic storage
management and addressing

m Explicit dereferencing and address-of operator
B Can do address arithmetic in restricted forms
B Domain type need not be fixed (void *)

B C++ reference types

m Constant pointers that are implicitly
dereferenced

m Typically used for parameters

B Advantages of both pass-by-reference and pass-
by-value

B Chapter 5: Data Types & 59

Pointer Examples (cont.)

B FORTRAN 90 Pointers

®m Can point to heap and non-heap variables
® Implicit dereferencing

m Special assignment operator for non-
dereferenced references

m Java—only references

® No pointer arithmetic

m Can only point at objects (which are all on the
heap)

® No explicit deallocator (garbage collection is
used)

B Means there can be no dangling references
m Dereferencing is always implicit

B Chapter 5: Data Types & 60

)

Evaluation of Pointers

®m Dangling pointers and dangling objects
are problems, as is heap management

m Pointers are like goto's—they widen
the range of cells that can be accessed
by a variable, but also complicate
reasoning and open up new problems

B Pointers services are necessary—so we
can't design a language without them

B Chapter 5: Data Types & 61

