Control Structures

In Text: Chapter 7



Outline

N
B Control structures

m Selection
B One-way

H Two-way
® Multi-way

®m [teration
B Counter-controlled
m Logically-controlled

m Gotos
B Guarded statements

B Chapter 7: Control Structures & 2



Levels of Control Flow

|
B Within expressions

B Among program statements
B Among program units

B Chapter 7: Control Structures & 3



Evolution of Control Structures
]
B FORTRAN I control statements were based

directly on IBM 704 hardware

B Much research and argument in thel960s
about the issue

B One important result: It was proven that all
flowcharts can be coded with only two-way
selection and pretest logical loops

B Chapter 7: Control Structures & 4



Control Structures

B A control structure iIs a control statement
and the statements whose execution it
controls

®m Overall Design Question:

m \What control statements should a
language have, beyond selection and
pretest logical loops?

m Single entry/single exit are highly
desirable (a lesson learned from
structured programming)

B Chapter 7: Control Structures & 5




Compound Statements

B Introduced by ALGOL 60 in the form of
begin...end

B A block is a compound statement that can
define a new scope (with local variables)

B Chapter 7: Control Structures & 6



Selection Statements

|
B Design Issues:

B What is the form and type of the control
expression?

® What is the selectable segment form (single
statement, statement sequence, compound
statement)?

® How should the meaning of nested selectors be
specified?

B Chapter 7: Control Structures & 7



Single-Way Selection

B One-way “If” statement I
m FORTRAN IF: ?*
IF (boolean_expr) statement 94—

B Problem: can select only a single statement;
to select more, a goto must be used

IF (.NOT. condition) GOTO 20

20 CONTINUE

B Chapter 7: Control Structures & 8



Two-Way Selection

B “iIf-then-else” statement

m ALGOL 60 if: e =

If (boolean_expr) then __>?<—
statement

else
statement

B The statements could be single or compound

B Chapter 7: Control Structures & 9



Nested Selectors

N
m Pascal:

If ... then
If ... then

else ...

B Which “then” gets the “else”?
B Pascal's rule: else goes with the nearest then

B Chapter 7: Control Structures & 10



Disallowing Direct Nesting

.
B ALGOL 60’s solution—disallows direct nesting

If ... then If ... then
begin begin
If ... then If ... then
else end
else
end

B Chapter 7: Control Structures & 11



Closing Reserved Words

® FORTRAN 77, Ada, Modula-2 solution—closing special

words

B In Ada:
If ... then If ... then
If ... then If ... then
else end if
—_ else
end If
end If end If

B Advantage: flexibility and readability

B Modula-2 uses END for all control structures
B This results in poor readability

B Chapter 7: Control Structures & 12



Multiple Selection Constructs

B Design Issues:

® \What is the form and type of the control
expression?

B \What segments are selectable (single,
compound, sequential)?

B |s the entire construct encapsulated?

m |s execution flow through the structure
restricted to include just a single
selectable segment?

B \What about unrepresented expression
values?

B Chapter 7: Control Structures & 13



Early Multiple Selectors:

B FORTRAN arithmetic IF (a three-way
selector)

IF (arithmetic expression) N1, N2, N3

B Disadvantages:

B Not encapsulated (selectable segments could be
anywhere)

B Segments require GOTOs
B FORTRAN computed GOTO and assignhed GOTO

B Chapter 7: Control Structures & 14



Modern Multiple Selectors

B Pascal case (from Hoare's contribution to
ALGOL W)

case expression of
constant list 1:statement 1;

constant list n:statement n
end

B Chapter 7: Control Structures & 15



Case: Pascal Design Choices

B Expression is any ordinal type (int, boolean,
char, enum)

B Segments can be single or compound
B Construct is encapsulated

B Only one segment can be executed per
execution of the construct

® In Wirth's Pascal, result of an unrepresented
control expression value is undefined (In
1984 ISO Standard, it is a runtime error)

B Many dialects now have otherwise or else
clause

B Chapter 7: Control Structures & 16



C/C++ Switch

]
switch (expression) {
constant_expression_1 : statement 1,

constant_expression_n :statement_n;
[default: statement _n+1]

}

® Design Choices (for switch):
B Control expression can be only an integer type
B Selectable segments can be statement sequences or blocks
® Construct is encapsulated

B Any number of segments can be executed in one execution
of the construct (reliability vs. flexibility)

B Default clause for unrepresented values

B Chapter 7: Control Structures & 17



Case: Ada Design Choices

case expression is
when constant_list 1 => statement_1;

when constant_list n => statement_n;

endSimilar to Pascal's case, except:
® Similar to Pascal

B Constant lists can include:
B Subranges: 10..15
m Multiple choices: 1..5| 7] 15..20

B Lists of constants must be exhaustive (more
reliable)

B Often accomplished with others clause

B Chapter 7: Control Structures & 18



Multi-Way If Statements

Multiple Selectors can appear as direct extensions
to two-way selectors, using else-if clauses (ALGOL
68, FORTRAN 77, Modula-2, Ada)

B Ada:
if ... then
elgi.f ... then
elgi.f ... then
else ...
end iIf

B Far more readable than deeply nested if's
B Allows a boolean gate on every selectable group

B Chapter 7: Control Structures & 19



Iterative Statements
.
B The repeated execution of a statement or

compound statement is accomplished either
by iteration or recursion

B Here we look at iteration, because recursion
IS unit-level control

B General design issues for iteration control
statements:
® How is iteration controlled?
B Where is the control mechanism in the loop?

B Two common strategies: counter-
controlled, and logically-controlled

B Chapter 7: Control Structures & 20




Counter-Controlled Loops

|
B Design Issues:

B What is the type and scope of the loop
variable?

B What is the value of the loop variable at loop
termination?

® Should it be legal for the loop variable or
loop parameters to be changed in the loop
body?

m If so, does the change affect loop control?

B Should the loop parameters be evaluated
only once, or once for every iteration?

B Chapter 7: Control Structures & 21



FORTRAN DO Loops

® FORTRAN 77 and 90
B Syntax:

DO label var = start, finish [, stepsize]
B Stepsize can be any value but zero
B Parameters can be expressions

® Design choices:
B Loop var can be INTEGER, REAL, or DOUBLE
m Loop var always has its last value
® Loop parameters are evaluated only once

m The loop var cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it
does not affect loop control

B Chapter 7: Control Structures & 22



FORTRAN 90°’s Other DO

B Syntax:
[name:] DO variable = initial, terminal [, stepsize]

END DO [name]

B Loop var must be an INTEGER

B Chapter 7: Control Structures & 23



ALGOL 60 For Loop

B Syntax:
for var :=<list_of stuff>do statement

B where <list_of stuff>can have:
m list of expressions
B expression step expression until expression
B expression while boolean_expression

for index := 1 step 2 until 50, 60, 70,
80, iIndex + 1 until 100 do

m (index=1,3,5,7,..,49, 60, 70, 80, 81, 82, ..., 100)

B Chapter 7: Control Structures & 24



ALGOL 60 For Design Choices

B Control expression can be int or real,; its
scope is whatever it is declared to be

B Control var has its last assigned value after
loop termination

B The loop var cannot be changed in the loop,
but the parameters can, and when they are,
It affects loop control

B Parameters are evaluated with every
Iteration, making it very complex and
difficult to read

B Chapter 7: Control Structures & 25



Pascal For Loop

|
B Syntax:
for var = initial (to | downto) final do

statement

® Design Choices:
B Loop var must be an ordinal type of usual scope
B After normal termination, loop var is undefined
B The loop var cannot be changed in the loop

B The loop parameters can be changed, but they
are evaluated just once, so it does not affect loop
control

B Chapter 7: Control Structures & 26



Ada For Loop

B Syntax:
for var in [reverse] discrete_range loop

end loop

® Design choices:

m Type of the loop var is that of the discrete range; its scope
Is the loop body (it is implicitly declared)

m The loop var does not exist outside the loop

m The loop var cannot be changed in the loop, but the
discrete range can; it does not affect loop control

B The discrete range is evaluated just once

B Chapter 7: Control Structures & 27



C For Loop

® Syntax:
for (Jexpr_1],; [expr_2]; [expr_3])
statement

B The expressions can be whole statements, or
even statement sequences, with the
statements separated by commas

B The value of a multiple-statement

expression is the value of the last statement
IN the expression

B |If the second expression is absent, it is an
Infinite loop

B Chapter 7: Control Structures & 28



C For Loop Design Choices

® There is no explicit loop variable
B Everything can be changed in the loop
B Pretest

B The first expression is evaluated once, but
the other two are evaluated with each
iteration

B This loop statement is the most flexible

B Chapter 7: Control Structures & 29



C++ & Java For Loops

m Differs from C in two ways:
B The control expression can also be Boolean

B The initial expression can include variable
definitions; scope Is from the definition to the end
of the body of the loop

m Java iIs the same, except the control
expression must be Boolean

B Chapter 7: Control Structures & 30



Logically-Controlled Loops

|
B Design Issues:

B Pretest or post-test?

®m Should this be a special case of the counting loop
statement, or a separate statement?

B Chapter 7: Control Structures & 31



Logic Loops: Examples

B Pascal: separate pretest and posttest logical loop
statements (while-do and repeat-until)

m C and C++: also have both, but the control
expression for the post-test version is treated just
like In the pretest case (while - do and do - while)

m Java: like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning—Java has no goto)

B Ada: a pretest version, but no post-test
® FORTRAN 77 and 90: have neither

B Chapter 7: Control Structures & 32



User-Located Loop Controls

N
B Statements like break or continue

B Design issues:
®m Should the conditional be part of the exit?

® Should the mechanism be allowed in logically- or
counter-controlled loops?

B Should control be transferable out of more than
one loop?

B Chapter 7: Control Structures & 33



User-Located Controls: Ada

B Can be conditional or unconditional; for any loop;
any number of levels

for ... loop

exit when ...

end loop;

LOOP1.:

while ... loop
LOOP2:

for ... loop

exit LOOP1 when ..
er.llc.:l loop LOOPZ,;

er.llc.:l loop LOOP1,

B Chapter 7: Control Structures & 34



User-Loc. Controls: More Examples

m C, C++, Java:

B Break: unconditional; for any loop or switch; one
level only (except Java)

B Continue: skips the remainder of this iteration,
but does not exit the loop

m FORTRAN 90:

m EXIT: Unconditional; for any loop, any number of
levels

B CYCLE: same as C's continue

B Chapter 7: Control Structures & 35



Ilteration Based on Data Structures
N
B Concept: use order and number of elements

of some data structure to control iteration

B Two strategies:

B “Passive” iterator: provide a set of functions for a
data structure that the user can use to construct
a loop using while, for, etc.

m “Active” iterator: encapsulate the loop control in
an operation, and only allow the user to provide
the loop body; in other words, provide a
“functional form” or a template operation for
the entire loop

B Chapter 7: Control Structures & 36



Unconditional Branching (GOTO)

|
B Problem: readability

B Some languages do not have them: e.q.,
Modula-2 and Java

B They require some kind of statement label

m Label forms:

®m Unsigned Int constants: Pascal (with colon),
FORTRAN (no colon)

B |dentifiers with colons: ALGOL 60, C, C++
B |dentifiers In << ... >>: Ada

B Chapter 7: Control Structures & 37



Variables as labels: PL/I

N
B Can store a label value in a variable

B Can be assigned values and passed as
parameters

m Highly flexible, but make programs
Impossible to read and difficult to
Implement

B Chapter 7: Control Structures & 38



Restrictions on Pascal's Gotos

B A statement group iIs either a compound statement
or the body of a repeat-until

B The target of a goto cannot be a statement in a
statement group that is not active

B Means the target can never be in a statement group
that is at the same level or iIs nested more deeply
than the one with the goto

B An important remaining problem: the target can be
INn any enclosing subprogram scope, as long as the
statement is not in a statement group

B This means that a goto can terminate any number
of subprograms

B Chapter 7: Control Structures & 39



Guarded Commands (Dijkstra, 1975)

B Purpose: to support a new programming
methodology (verification during program
development)

B Also useful for concurrency

B Two guarded forms:
m Selection (guarded if)
m Iteration (guarded while)

B Chapter 7: Control Structures & 40



Guarded Selection

-
If <boolean> -> <statement>
[1 <boolean> -> <statement>

[] <boolean> -> <statement>

fi

B Semantics: when this construct is reached,
B Evaluate all boolean expressions

m If more than one are true, choose one nondeterministically
m If none are true, it is a runtime error

B |dea: if the order of evaluation is not important, the
program should not specify one

B See book examples (p. 319)

B Chapter 7: Control Structures & 41



Guarded lteration

L
do <boolean> -> <statement>

[] <boolean> -> <statement>

[] <boolean> -> <statement>
od

B Semantics: For each iteration:
m Evaluate all boolean expressions

® |[f more than one are true, choose one
nondeterministically; then start loop again

m If none are true, exit loop

B See book example (p. 320)

B Chapter 7: Control Structures & 42



Choice of Control Statements
.
B Beyond selection and logical pretest loops,

choice iIs a trade-off between language size,

readability, and writability

B Chapter 7: Control Structures & 43



