
1

Control Structures

In Text: Chapter 7

 Chapter 7: Control Structures 2

Outline

Control structures
Selection

One-way
Two-way
Multi-way

Iteration
Counter-controlled
Logically-controlled

Gotos
Guarded statements

 Chapter 7: Control Structures 3

Levels of Control Flow

Within expressions
Among program statements
Among program units

 Chapter 7: Control Structures 4

Evolution of Control Structures

FORTRAN I control statements were based
directly on IBM 704 hardware
Much research and argument in the1960s
about the issue
One important result: It was proven that all
flowcharts can be coded with only two-way
selection and pretest logical loops

 Chapter 7: Control Structures 5

Control Structures

A control structure is a control statement
and the statements whose execution it
controls
Overall Design Question:

What control statements should a
language have, beyond selection and
pretest logical loops?

Single entry/single exit are highly
desirable (a lesson learned from
structured programming)

 Chapter 7: Control Structures 6

Compound Statements

Introduced by ALGOL 60 in the form of
begin...end
A block is a compound statement that can
define a new scope (with local variables)

 Chapter 7: Control Structures 7

Selection Statements

Design Issues:
What is the form and type of the control
expression?
What is the selectable segment form (single
statement, statement sequence, compound
statement)?
How should the meaning of nested selectors be
specified?

 Chapter 7: Control Structures 8

Single-Way Selection

One-way “if” statement
FORTRAN IF:

 IF (boolean_expr) statement

Problem: can select only a single statement;
to select more, a goto must be used

 IF (.NOT. condition) GOTO 20
 ...
 ...
 20 CONTINUE

 Chapter 7: Control Structures 9

Two-Way Selection

“if-then-else” statement
 ALGOL 60 if:

 if (boolean_expr) then
 statement
 else
 statement

The statements could be single or compound

 Chapter 7: Control Structures 10

Nested Selectors

Pascal:
 if ... then
 if ... then
 ...
 else ...

Which “then” gets the “else”?
Pascal's rule: else goes with the nearest then

 Chapter 7: Control Structures 11

Disallowing Direct Nesting

ALGOL 60’s solution—disallows direct nesting
 if ... then
 begin
 if ... then
 ...
 else
 ...
 end

if ... then
 begin
 if ... then
 ...
 end
else
 ...

 Chapter 7: Control Structures 12

Closing Reserved Words
FORTRAN 77, Ada, Modula-2 solution—closing special
words
In Ada:

 if ... then
 if ... then
 ...
 else
 ...
 end if
 end if

Advantage: flexibility and readability
Modula-2 uses END for all control structures

This results in poor readability

if ... then
 if ... then
 …
 end if
else
 ...
end if

 Chapter 7: Control Structures 13

Multiple Selection Constructs

Design Issues:
What is the form and type of the control
expression?
What segments are selectable (single,
compound, sequential)?
Is the entire construct encapsulated?
Is execution flow through the structure
restricted to include just a single
selectable segment?
What about unrepresented expression
values?

 Chapter 7: Control Structures 14

Early Multiple Selectors:

FORTRAN arithmetic IF (a three-way
selector)

 IF (arithmetic expression) N1, N2, N3
Disadvantages:

Not encapsulated (selectable segments could be
anywhere)
Segments require GOTOs

FORTRAN computed GOTO and assigned GOTO

 Chapter 7: Control Structures 15

Modern Multiple Selectors

Pascal case (from Hoare's contribution to
ALGOL W)

 case expression of
 constant_list_1 : statement_1;
 ...
 constant_list_n : statement_n
 end

 Chapter 7: Control Structures 16

Case: Pascal Design Choices
Expression is any ordinal type (int, boolean,
char, enum)
Segments can be single or compound
Construct is encapsulated
Only one segment can be executed per
execution of the construct
In Wirth's Pascal, result of an unrepresented
control expression value is undefined (In
1984 ISO Standard, it is a runtime error)
Many dialects now have otherwise or else
clause

 Chapter 7: Control Structures 17

C/C++ Switch
switch (expression) {
 constant_expression_1 : statement_1;
 ...
 constant_expression_n : statement_n;
 [default: statement_n+1]
}

Design Choices (for switch):
Control expression can be only an integer type
Selectable segments can be statement sequences or blocks
Construct is encapsulated
Any number of segments can be executed in one execution
of the construct (reliability vs. flexibility)
Default clause for unrepresented values

 Chapter 7: Control Structures 18

Case: Ada Design Choices
 case expression is
 when constant_list_1 => statement_1;
 ...
 when constant_list_n => statement_n;
 endSimilar to Pascal's case, except:

Similar to Pascal
Constant lists can include:

Subranges: 10..15
Multiple choices: 1..5 | 7 | 15..20

Lists of constants must be exhaustive (more
reliable)
Often accomplished with others clause

 Chapter 7: Control Structures 19

Multi-Way If Statements
Multiple Selectors can appear as direct extensions
to two-way selectors, using else-if clauses (ALGOL
68, FORTRAN 77, Modula-2, Ada)
Ada:

 if ... then
 ...

 elsif ... then
 ...
 elsif ... then
 ...
 else ...

 end if
Far more readable than deeply nested if's
Allows a boolean gate on every selectable group

 Chapter 7: Control Structures 20

Iterative Statements

The repeated execution of a statement or
compound statement is accomplished either
by iteration or recursion
Here we look at iteration, because recursion
is unit-level control
General design issues for iteration control
statements:

How is iteration controlled?
Where is the control mechanism in the loop?

Two common strategies: counter-
controlled, and logically-controlled

 Chapter 7: Control Structures 21

Counter-Controlled Loops
Design Issues:
What is the type and scope of the loop
variable?
What is the value of the loop variable at loop
termination?
Should it be legal for the loop variable or
loop parameters to be changed in the loop
body?
If so, does the change affect loop control?
Should the loop parameters be evaluated
only once, or once for every iteration?

 Chapter 7: Control Structures 22

FORTRAN DO Loops
FORTRAN 77 and 90
Syntax:

 DO label var = start, finish [, stepsize]
Stepsize can be any value but zero
Parameters can be expressions
Design choices:

Loop var can be INTEGER, REAL, or DOUBLE
Loop var always has its last value
Loop parameters are evaluated only once
The loop var cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it
does not affect loop control

 Chapter 7: Control Structures 23

FORTRAN 90’s Other DO

Syntax:
 [name:] DO variable = initial, terminal [, stepsize]
 ...
 END DO [name]

Loop var must be an INTEGER

 Chapter 7: Control Structures 24

ALGOL 60 For Loop
Syntax:

 for var := <list_of_stuff> do statement
where <list_of_stuff> can have:

list of expressions
expression step expression until expression
expression while boolean_expression

 for index := 1 step 2 until 50, 60, 70,
 80, index + 1 until 100 do

(index = 1, 3, 5, 7, ..., 49, 60, 70, 80, 81, 82, ..., 100)

 Chapter 7: Control Structures 25

ALGOL 60 For Design Choices

Control expression can be int or real; its
scope is whatever it is declared to be
Control var has its last assigned value after
loop termination
The loop var cannot be changed in the loop,
but the parameters can, and when they are,
it affects loop control
Parameters are evaluated with every
iteration, making it very complex and
difficult to read

 Chapter 7: Control Structures 26

Pascal For Loop

Syntax:
 for var := initial (to | downto) final do
 statement

Design Choices:
Loop var must be an ordinal type of usual scope
After normal termination, loop var is undefined
The loop var cannot be changed in the loop
The loop parameters can be changed, but they
are evaluated just once, so it does not affect loop
control

 Chapter 7: Control Structures 27

Ada For Loop
Syntax:

 for var in [reverse] discrete_range loop
 ...
 end loop

Design choices:
Type of the loop var is that of the discrete range; its scope
is the loop body (it is implicitly declared)
The loop var does not exist outside the loop
The loop var cannot be changed in the loop, but the
discrete range can; it does not affect loop control
The discrete range is evaluated just once

 Chapter 7: Control Structures 28

C For Loop
 Syntax:

 for ([expr_1] ; [expr_2] ; [expr_3])
 statement

The expressions can be whole statements, or
even statement sequences, with the
statements separated by commas
The value of a multiple-statement
expression is the value of the last statement
in the expression
If the second expression is absent, it is an
infinite loop

 Chapter 7: Control Structures 29

C For Loop Design Choices

There is no explicit loop variable
Everything can be changed in the loop
Pretest
The first expression is evaluated once, but
the other two are evaluated with each
iteration
This loop statement is the most flexible

 Chapter 7: Control Structures 30

C++ & Java For Loops

Differs from C in two ways:
The control expression can also be Boolean
The initial expression can include variable
definitions; scope is from the definition to the end
of the body of the loop

Java is the same, except the control
expression must be Boolean

 Chapter 7: Control Structures 31

Logically-Controlled Loops

Design Issues:
Pretest or post-test?
Should this be a special case of the counting loop
statement, or a separate statement?

 Chapter 7: Control Structures 32

Logic Loops: Examples
Pascal: separate pretest and posttest logical loop
statements (while-do and repeat-until)
C and C++: also have both, but the control
expression for the post-test version is treated just
like in the pretest case (while - do and do - while)
Java: like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning—Java has no goto)
Ada: a pretest version, but no post-test
FORTRAN 77 and 90: have neither

 Chapter 7: Control Structures 33

User-Located Loop Controls

Statements like break or continue
Design issues:

Should the conditional be part of the exit?
Should the mechanism be allowed in logically- or
counter-controlled loops?
Should control be transferable out of more than
one loop?

 Chapter 7: Control Structures 34

User-Located Controls: Ada
Can be conditional or unconditional; for any loop;
any number of levels

 for ... loop
 ...
 exit when ...
 ...
 end loop;

LOOP1:
 while ... loop
 ...
LOOP2:
 for ... loop
 ...
 exit LOOP1 when ..
 ...
 end loop LOOP2;
 ...
 end loop LOOP1;

 Chapter 7: Control Structures 35

User-Loc. Controls: More Examples

C, C++, Java:
Break: unconditional; for any loop or switch; one
level only (except Java)
Continue: skips the remainder of this iteration,
but does not exit the loop

FORTRAN 90:
EXIT: Unconditional; for any loop, any number of
levels
CYCLE: same as C's continue

 Chapter 7: Control Structures 36

Iteration Based on Data Structures

Concept: use order and number of elements
of some data structure to control iteration
Two strategies:

“Passive” iterator: provide a set of functions for a
data structure that the user can use to construct
a loop using while, for, etc.
“Active” iterator: encapsulate the loop control in
an operation, and only allow the user to provide
the loop body; in other words, provide a
“functional form” or a template operation for
the entire loop

 Chapter 7: Control Structures 37

Unconditional Branching (GOTO)

Problem: readability
Some languages do not have them: e.g.,
Modula-2 and Java
They require some kind of statement label
Label forms:

Unsigned int constants: Pascal (with colon),
FORTRAN (no colon)
Identifiers with colons: ALGOL 60, C, C++
Identifiers in << ... >>: Ada

 Chapter 7: Control Structures 38

Variables as labels: PL/I

Can store a label value in a variable
Can be assigned values and passed as
parameters
Highly flexible, but make programs
impossible to read and difficult to
implement

 Chapter 7: Control Structures 39

Restrictions on Pascal's Gotos
A statement group is either a compound statement
or the body of a repeat-until
The target of a goto cannot be a statement in a
statement group that is not active
Means the target can never be in a statement group
that is at the same level or is nested more deeply
than the one with the goto
An important remaining problem: the target can be
in any enclosing subprogram scope, as long as the
statement is not in a statement group
This means that a goto can terminate any number
of subprograms

 Chapter 7: Control Structures 40

Guarded Commands (Dijkstra, 1975)

Purpose: to support a new programming
methodology (verification during program
development)
Also useful for concurrency
Two guarded forms:

Selection (guarded if)
Iteration (guarded while)

 Chapter 7: Control Structures 41

Guarded Selection
if <boolean> -> <statement>
[] <boolean> -> <statement>
 ...
[] <boolean> -> <statement>
fi

Semantics: when this construct is reached,
Evaluate all boolean expressions
If more than one are true, choose one nondeterministically
If none are true, it is a runtime error

Idea: if the order of evaluation is not important, the
program should not specify one
See book examples (p. 319)

 Chapter 7: Control Structures 42

Guarded Iteration
do <boolean> -> <statement>
[] <boolean> -> <statement>
 ...
[] <boolean> -> <statement>
od

Semantics: For each iteration:
Evaluate all boolean expressions
If more than one are true, choose one
nondeterministically; then start loop again
If none are true, exit loop

See book example (p. 320)

 Chapter 7: Control Structures 43

Choice of Control Statements

Beyond selection and logical pretest loops,
choice is a trade-off between language size,
readability, and writability

