
Chapter 12, Slide 1

Concurrency

Motivation 1: Mutual Exclusion

John and Mary share a bank acc't

withdraw x =

copy balance to local machine

subtract x

give out $$

write back (balance - x)

Suppose John & Mary each withdraw $100 at the same
time, from different machines:

John copies balance

Mary copies balance

John gets $100

Mary gets $100

John writes back (balance - 100)

Mary writes back (balance - 100)

New balance = balance - 100!

Chapter 12, Slide 2

Mutual Exclusion (continued)

Use a variable to restrict access to the account:
type gate = {open, closed};

var access: gate;

John/Mary:

while access = open do;

access := closed;

withdraw $$;

access := open

But what if

John : test, access = open

Mary : test, access = open -- before John has closed it

John : set access = closed

Mary : set access = closed

John: withdraw $$

Mary: withdraw $$

etc.

Problem: test/set of access is divisible

Chapter 12, Slide 3

The Producer/Consumer Model

Motivation 2: Synchronization

Producer / Consumer:

Producer makes items, places them in n-element buffer

Consumer removes items from buffer

Important:

don't put items in full buffer

don't take items from empty buffer

Suppose a buffer counter t is incremented by producer
and decremented by consumer:

read t into private register

update value of t locally

write back to t

Chapter 12, Slide 4

Semaphores (Dijkstra 1965)

A semaphore is a data object that can assume an
integer value and can be operated on by primitives
P and V.

P(s) =

if s > 0 then s := s - 1

else suspend current process;

V(s) =

if there is a process suspended on s

then wake it up

else s := s + 1;

Important:

P and V are indivisible instructions.

P: proberen (to try) or passeren (to pass)
V: verhogen (to increase) or vrygeren (to release)

Chapter 12, Slide 5

Solving Bank Problem with Semaphores

var mutex : semaphore := 1;

John:

P(mutex);

withdraw $$;

V(mutex);

Mary:

P(mutex);

withdraw $$;

V(mutex);

Chapter 12, Slide 6

General Producer/Consumer Model

semaphore mutex := 1, -- availability control

in := 0, -- # of things in buffer

spaces := n; -- # of empty spaces in buffer

process producer

repeat

produce thing;

P(spaces); -- wait for buffer space

P(mutex); -- wait for buffer availability

put thing in buffer;

V(mutex); -- free buffer

V(in); -- increase # of items in buffer

forever

process consumer

repeat

P(in); -- wait until something in buffer

P(mutex); -- wait for buffer availability

take thing from buffer;

V(mutex); -- free buffer

V(spaces); -- increase # free spaces in buffer

forever

Chapter 12, Slide 7

About Semaphores

Each semaphore has

way to suspend processes (use process queue)

policy for selecting process to wake up.

One semaphore per synchronization condition, not
per resource.

Low level, may be tricky and tedious to use.

Deadlock quite possible.

Chapter 12, Slide 8

Monitors (Brinch Hansen & Hoare '73-'74)

• ADTs in a concurrent environment

used in Concurrent Pascal, Modula

• Instance of a monitor => shared resource

• Monitors are passive:

 data + proc defs + init code

• Active processes use monitors

• Mutual exclusion of access to monitor guaranteed by
system

Chapter 12, Slide 9

Implementing a Producer/Consumer
Buffer with Monitors

main
queue
(calls to append
 and remove)

sender
. . .

receiver
. . .

.

.

.

buffer

(type
fifostorage)

Chapter 12, Slide 10

 Monitor Implementation

type fifostorage =
monitor

var contents: array [1. .n] of integer; -- data
tot: 0. .n; -- count of items in buffer
in, out: 1. .n; -- “pointers” to buffer cells
sender, receiver: queue;

procedure entry append (item: integer); -- procedures
begin

if tot = n then delay (sender);
contents[in] := item;
in := (in mod n) + 1;
tot := tot + 1;
continue (receiver)

end;

procedure entry remove (var item: integer);
begin

if tot = 0 then delay (receiver);
item := contents[out];
out := (out mod n) + 1;
tot := tot - 1;
continue (sender)

end;

begin
-- initialization code

tot := 0;
in := 1;
out := 1

end

Chapter 12, Slide 11

Monitor Implementation (continued)

type producer = process (storage: fifostorage);
var element: integer;
begin cycle

. . .
storage.append (element);
end

end;

type consumer = process (storage: fifostorage);
var datum: integer;
begin cycle

. . .
storage.remove (datum);
. . .
end

end;

var meproducer: producer;
youconsumer: consumer;
buffer: fifostorage;

begin -- start everything
init buffer, meproducer (buffer), youconsumer (buffer)

end

Chapter 12, Slide 12

Monitors (continued)

for cooperation, use delay and continue:

delay -- takes name of queue and suspends executing
process on that queue

continue -- takes name of queue and reactivates a
suspended process on that queue.

In both cases, active process releases lock on
monitor.

Chapter 12, Slide 13

Rendezvous (Ada)

Ada concurrent units: tasks

No active/passive distinction; shared resource is
represented by a task.

Entry into task is via an accept statement, often inside
a select, i.e.,

{when <condition> =>}

accept <entryname> (<params>) do <entry body>;

end;

To other process, task entry call is (and looks) just like
any procedure except it's only carried out when the
task owning the entry executes the corresponding
accept.

Rendezvous:

entry has been invoked, and

task w/entry declaration has executed accept.

Suspension:

caller invokes entry when task not in accept, or

task executes accept when no other task has called entry

Chapter 12, Slide 14

Ada Rendezvous (continued)

Accepts:

Alternatives with true when condition are marked
open. (Those without conditions are always open.)

Open entries for which an entry call has already been
issued are marked available. Any available alternative
may be selected (nondeterminism).

Open alternatives but no available alternatives => task
suspends until one becomes available.

No open alternatives => error.

Only one entry can be accepted at a time

Chapter 12, Slide 15

Either-Or Rendezvous Task

task body Data_collector is
begin
 select
 -- if data is available for processing, process it
 -- otherwise execute the else part of the select statement
 accept Put_data (Sensor_in: SENSOR_VALUE) do
 Process_data (Sensor_in) ;
 end Put_data ;
 else
 -- execute Self_test rather than wait for data
 Self_test ;
 end select ;
end Data_collector ;

Chapter 12, Slide 16

Implementing Producer/Consumer
with Ada Rendezvous

task buffer_handler is
entry append (item: in integer);
entry remove (item: out integer);

end;
task body buffer_handler is

n: constant integer := 20; -- buffer size
contents: array (1. .n) of integer;
in, out: integer range 1. .n := 1; -- “pointers” into buffer
tot: integer range 0. .n := 0; -- # of items currently in buffer

begin loop
select

when tot < n => -- buffer not full
accept append (item: in integer) do

contents(in) := item;
end;

in := (in mod n) + 1;
tot := tot + 1;

or
when tot > 0 => -- buffer not empty

accept remove (item: out integer) do
item := contents (out);

end;
out := (out mod n) + 1;
tot := tot - 1;

end select;
end loop;
end buffer_handler;

PRODUCER CONSUMER
loop loop
 produce new value V; buffer_handler.remove (V);
 buffer_handler.append (V); consume V;
 exit when V => end of stream; exit when V => end of stream;
end loop; end loop;

Chapter 12, Slide 17

Ada Sequence Counter

task Counter is
 entry Add (N: NATURAL) ;
 entry Subtract (N: NATURAL) ;
 entry Put_value (N: NATURAL) ;
 entry Get_value (N: out NATURAL) ;

end Counter ;

task body Counter is
Value: NATURAL := 0 ;

begin
 loop

select
accept Add (N: NATURAL) do

Value := Value + N ;
end Add ;

 or
 accept Subtract (N: NATURAL) do

Value := Value - N ;
end Subtract ;

 or
accept Put_value (N: NATURAL) do

Value := N ;
end Put_value ;

 or
 accept Get_value (N: out NATURAL) do

N := Value ;
end Get_value ;

end select ;
end loop ;

end Counter ;

Chapter 12, Slide 18

Ada Transponder

task type Transponder is
 entry Give_position (Pos: POSITION) ;
end Transponder ;

task body Transponder is
Current_position: POSITION ;
C1, C2: Satellite.COORDS ;

 loop
 select
 accept Give_position (Pos: out POSITION) do
 Pos:= Current_position ;
 end Give_position ;
 else
 C1 := Satellite1.Position ;
 C2 := Satellite2.Position ;
 Current_position := Navigator.Compute (C1, C2) ;
 end select ;
 end loop ;
end Transponder ;

Chapter 12, Slide 19

Concurrent Office IR System

procedure Office_system is
task Get_command ;
task Process_command is

entry Command_menu ;
entry Display_indexes ;
entry Edit_qualifier ;

 -- Additional entries here.
 -- One for each command

 end Process_commands ;
 task Output_message is
 entry Message_available ;
 end Output_message ;
 task Workspace_editor is
 entry Enter ;
 entry Leave ;
 end Workspace_editor ;

(to be continued)

Chapter 12, Slide 20

Concurrent Office IR System - II

task body Get_command is
begin

loop
Cursor_position := Get_cursor_position ;
exit when cursor positioned in workspace or

 (cursor positioned over menu and button pressed)
Display_cursor_position ;

end loop ;
if In_workspace (Cursor_position) then

Workspace_editor.Enter ;
elsif In_command_menu (Cursor_position) then

Process_command.Command_menu ;
elsif In_Known_indexes (Cursor_position) then

 Process_command.Display_indexes ;
 elsif In_Current_indexes (Cursor_position) then

 ...
 Other commands here

 ...
end Get_command ;

Chapter 12, Slide 21

Concurrent Office IR System - III

task body Process_command is
Command: COMMAND.T ;
Index: INDEX.T ;

begin
Workspace_editor.Leave ;
loop

accept Command_menu do
 Display_command_menu ;
 Get_menu_selection (Command) ;
 Execute_menu_command (Command) ;
 end Command_menu;
 accept Display_indexes do
 Display_current_indexes ;
 Get_index_selection (Index) ;
 end Display_indexes;
 ...
 Other commands here
 ...
end Office_system ;

Chapter 12, Slide 22

Sequenced Rendezvous Actions

For the case where actions are to be in a strict
sequence

task body Thermocouple is
begin
 accept Get_temperature (T: in out TEMPERATURE) do
 -- code here to interrogate the hardware
 end Get_temperature ;
 accept Calibrate (T: TEMPERATURE) do
 -- code here to calibrate the thermocouple
 end Calibrate ;
 accept Disconnect do
 -- code to implement a hardware shutdown
 end Disconnect ;
end Thermocouple ;

