
CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

Due Date: Tuesday, Dec 10, 11:59pm (Late days may be used.)

This project can be done in groups of 2 students.

1 Introduction

This assignment introduces you to the principles of internetwork communication using
the HTTP and TCP protocols, which form two of the most widely used protocols in to-
day’s Internet. In addition, the assignment will give you some insights into how to con-
struct web services that are based on the popular REST [3, 4] architectural style, and show
an example of how to implement a multi-threaded server.

2 Functionality

In this part of the assignment, you will implement a basic HTTP web server that provides
access to web services and files. The web server should implement persistent connections
as per the HTTP/1.1 [2] protocol.

2.1 System Status Web Service

The system status web service is a basic HTTP web service that publishes a Linux system’s
status as reported by the kernel via the /proc file system. The web service must provide
this information in JSON [1] format.

The web service shall respond to requests for at least the following resources:

Service URL Example JSON Output Based On
/loadavg {"total threads": "174",

"loadavg": ["0.00", "0.00",
"0.03"], "running threads":
"1"}

/proc/loadavg

/meminfo {"SwapTotal": "5799928",
"SwapFree": "5793240",
"MemFree": "2434304", ... }

/proc/meminfo

In addition, you must support query arguments as per RFC 2616, Section 3.2.2. You must
support a ’callback’ argument. If given, you must return proper syntax for a JavaScript
function call in which the value of the field appears as function name and the JSON object
appears as argument. You should check that the argument provided to the ’callback’ field
consists of only alphanumeric characters, underscore (), and periods (.). You must ignore
all additional argument=value pairs. For example, a request to
/loadavg?callback=jsonp1258749550540& =1258749554624

Created by G. Back (gback@cs.vt.edu) 1 Revision : 1.11 November 14, 2013

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.2

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

would return jsonp1258749550540({"total threads": "174", "loadavg":
["0.00", "0.00", "0.03"], "running threads": "1"}).

(The second field is ignored.)

Note that the order of the attributes within the returned JSON object (e.g., SwapTotal,
SwapFree, etc.) is arbitrary. You can see a demo at http://cs3214.cs.vt.edu:9011/loadavg
and http://cs3214.cs.vt.edu:9011/meminfo.

You should return appropriate error codes for requests to URLs you do not support.

2.2 Serving Files

Your web server should, like a traditional web server, support serving files from a direc-
tory (the ’root’) in the server’s file system. These files should appear under the /files
URL. For instance, if the URL /files/widget/plugins/jqplot.barRenderer.js
is visited, and the root directory is set to the parent directory (widget), the content of the
file widget/plugins/jqplot.barRenderer.js should be served. You should re-
turn appropriate content type headers, based on the served file’s suffix. Support at least
.html, .js, and .css files; see /etc/mime.types for a complete list.

Make sure that you do not accidentally expose other files by ensuring that the request url
does not contain .., such as /files/../../../../../etc/passwd.

2.3 Synthetic Load Requests

A system’s load average as well as its physical memory use (and the resulting statistics)
are influenced by the actions and resource needs of the processes running on it. You
should implement a set of paths that serve as entry points for synthetic load requests.
When visited, your web server should induce a synthetic load that causes a change in a
system’s CPU or memory load (which would then be reflected in the data reported by the
system status service.) You should implement the following synthetic load requests:

1. /runloop When this URL is visited, start a thread or process that spins (loops) for
15 seconds. This loop should be started in parallel, without delaying the response
to this request. The expected result will be a temporary increase in the load average.
Recall that the load average is a weighted average over samples that represent the
number of ready or running threads.

2. /allocanon method should force the system to allocate physical memory devoted
to anonymous virtual memory. “Anonymous” virtual memory is the memory back-
ing a process’s heap or areas mapped via mmap’s MAP ANONYMOUS feature.
It’s called anonymous because it is not related to a known file on disk. Each request
should result in the allocation of 64MB. If a system still has free physical memory,
this should reduce the amount of physical memory by this much, which should be

Created by G. Back (gback@cs.vt.edu) 2 Revision : 1.11 November 14, 2013

http://cs3214.cs.vt.edu:9011/loadavg
http://cs3214.cs.vt.edu:9011/meminfo

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

displayed in the memory statistics. If physical memory is exhausted, the necessary
physical memory will come from the eviction of pages holding either cached file
data or anonymous memory.

Keep in mind that Linux, like all modern operating systems, allocates physical
memory on demand. Use mmap() to design a function that has the desired effect.
You should store a list of the blocks of memory you’ve allocated.

3. /freeanonmethod should force the system to deallocate a chunk of physical mem-
ory. To that end, you should munmap() the last block of memory you’ve allocated
as a result of a visit to /allocanon.

If all pages of the virtual memory block are still present in physical memory at that
time, the expected result is an increase in the amount of available physical memory.

All requests should respond with a short HTML message describing the outcome of the
operation. This part of the project is intended to allow for demoing the sysstat web ser-
vice, and is also intended to give you a deeper understanding of the concepts of CPU and
memory load in a system using virtual memory.

2.4 Multiple Client Support

For all of the above services, your implementation should support multiple clients simul-
taneously. It must be able to accept new clients and process HTTP requests even while
HTTP transactions with already accepted clients are still in progress. You should use
a single-process, multiple-threads approach. 1 It is up to you whether you spawn new
threads for every client, or use a thread pool. You may modify or reuse your thread pool
implementation from project 4.

To test that your implementation supports multiple clients correctly, we will connect to
your server, then delay the sending of the HTTP request. While your server has accepted
one client and is waiting for the first HTTP request by that client, it must be ready to
accept and serve additional clients. Your server may impose a reasonable limit on the
number of clients it simultaneously serves in this way.

2.5 Robustness

Network servers are designed for long running use. As such, they must be programmed
in a manner that is robust, even when individual clients send ill-formed requests, crash,
delay responses, or violate the HTTP protocol specification in other ways. No error in-
curred while handling one client’s request should impede your server’s ability to accept and handle
future clients.

1A multi-process approach is not acceptable. If you wish to explore an event-based approach, consult
with me first.

Created by G. Back (gback@cs.vt.edu) 3 Revision : 1.11 November 14, 2013

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

2.6 Protocol Independence

The Internet is currently undergoing a transition from IPv4 to IPv6. This transition is
spurred by the impending exhaustion of the IPv4 address space as well as by political
mandates.

Since IPv4 addresses can only be used to communicate between IPv4-enabled applica-
tions, and since IPv6 addresses can only be used to communicate between IPv6-enabled
applications, applications need to be designed to support both protocols and addresses,
using whichever is appropriate for a particular connection. For a TCP/UDP server, this
requires to accept connections both via IPv6 as well as via IPv4, depending on which ver-
sions are enabled on a particular system. For a TCP/UDP client, this requires to identify
the addresses at which a particular server can be reached, and try them in order. Typi-
cally, if a server is reachable via both IPv4 and IPv6, the IPv6 address is tried first, then a
fallback onto the IPv4 address is performed.

Ensuring protocol independence requires avoiding any dependence on a specific protocol
in your code. Fortunately, the socket API was designed to support multiple protocols
from the beginning as its designers foresaw that protocols and addressing mechanisms
would evolve. For instance, the bind() and connect() calls refer to the addresses passed
using the type struct sockaddr * which is an opaque type that could refer to either
a IPv4 or IPv6 address.

To implement protocol independence, you need to avoid any dependence on a particular
address family. Accordingly, you should use the getaddrinfo(3) or getnameinfo(3)
functions to translate from symbolic names to addresses and vice versa and you should
avoid the outdated functions gethostbyname(3), getaddrbyname(3), or inet ntoa(3)
or inet ntop(3).

An excellent tutorial on how to write protocol independent network code is given in this
resource: http://www.akkadia.org/drepper/userapi-ipv6.html The informa-
tion given in this guide replaces the (unfortunately) out of date chapter in our textbook.

Ensuring that your server can accept both IPv4 and IPv6 clients can be implemented
using two separate sockets, one bound to either family. Two separate threads can then
be devoted to these sockets to accept clients that connect using either of the two protocol
families.

However, the Linux kernel provides a convenience feature that provides a simpler fa-
cility for accepting both IPv6 and IPv4 clients. This so-called dual-bind feature allows
a socket bound to an IPv6 socket to accept IPv4 clients. Linux activates this feature if
/proc/sys/net/ipv6/bindv6only contains 0. You may assume in your code that dual-
bind is turned on. 2

2I should point out, however, that this will make your code Linux-specific; truly portable socket code
will need to resort to handling accepts on multiple sockets.

Created by G. Back (gback@cs.vt.edu) 4 Revision : 1.11 November 14, 2013

http://www.akkadia.org/drepper/userapi-ipv6.html

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

2.7 Relay Server

The use of network-address translation (NAT) that hides individual machines or even
entire networks behind firewalls has grown significantly in the past years. This trend
is motivated both by security concerns and by the aforementioned shortage of routable
IPv4 addresses. Understanding the implications of NAT is a crucial skill for application
developers for at least the foreseeable future.

Many, if not most, NAT setups allow connections to be initiated only from the inside of the
firewall to the outside. The NAT device is typically the default gateway for the hosts be-
hind the firewall, thus allowing it to monitor TCP connection requests to outside servers
that pass through the gateway. The NAT device can then establish and keep up-to-date
the necessary data structures to translate the addresses for this connection. Establishing
the correct translation for incoming connections is more difficult: if a TCP connection
request arrives on the public-facing interface of the NAT device, then the NAT device
would need to know to which server on the inside to forward the request. This informa-
tion needs to be provided by an administrator of the NAT device, making this approach
unsuitable when administrative access is not granted.

A commonly used technique to circumvent this restriction is the use of relay servers.
In this technique, a server located behind a firewall creates a TCP connection to a relay
server, which is running on a machine that has a routable IP address. Clients then connect
to the relay server, which forwards requests to the actual server and relays responses from
the server to the clients.

You should implement the ability to provide an HTTP/1.1 service through a relay server.
When run in relay server mode, your web service should initiate a TCP connection to the
relay server, and then send a single line terminated by \r\nwith a unique identifier, such
as your SLO login or group number, which must consist of one or more alphanumeric
characters. Subsequently, it should respond to HTTP/1.1 requests on that connection. The
relay server will create a URL to which clients can connect, which includes that identifier
as a prefix.

A relay server is running on cs3214.cs.vt.edu. Port 9050 is accepting connections from
web services wishing to make use of the relay service. It accepts connections from HTTP
clients on port 9051. Visit http://cs3214.cs.vt.edu:9051/ to see a status page. If a web
service connects and send ’prefix’ as the first line of data in that connection, requests to
http://cs3214.cs.vt.edu:9051/prefix/loadavg will be forwarded to the web
service as requests for /loadavg (after stripping the prefix).

Note that all connections from rlogin.cs.vt.edu machines will appear as going to a
port on machine hn1.cs.vt.edu, which is the DNS name of the public-facing interface
of our NAT gateway behind which the machines of the rlogin cluster are located.

Like most NAT gateways, the gateway at rlogin.cs.vt.edu times out inactive connections
after a set period. To ensure continuous reachability, your service should periodically
reconnect if no request was processed within the time out interval (currently 300 seconds).

Created by G. Back (gback@cs.vt.edu) 5 Revision : 1.11 November 14, 2013

http://cs3214.cs.vt.edu:9051/

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

2.8 Widgets

Widgets are HTML elements that, when inserted into HTML documents, function as
placeholders for enhanced information or functionality. This functionality is usually pro-
vided by supporting JavaScript code that interprets the widgets and their parameters.
I have designed two small widgets that can interact with the web service you’ll create.
These widgets graphically display the load average and memory usage of the machine
on which your service runs. They also include the functionality to access the synthetic
load request entry points via appropriate AJAX requests.

You can find a demo of the widgets at
http://cs3214.cs.vt.edu:9011/files/index.html. The files served from this directory are
available on the course web site. Please consult the HTML code of this file for how to
include the widgets into your own page for your testing and demonstration, as discussed
in Section 4.3.

2.9 Minimum Requirements

The minimum requirements include the web service functionality discussed in Section 2.1
and support for multiple clients as discussed in Section 2.4. Robust error handling is also
required. A test driver will check the minimum requirements.

These minimum requirements can be met using one-thread-per-client, HTTP/1.0-only
implementation. Support for the relay server or protocol independence is not required to
meet the minimum requirements.

2.10 Choice of Port Numbers and Relay Server Prefixes

Port numbers are shared among all processes on a machine. To reduce the potential for
conflicts, use a port number that is 10,000 + last four digits of the student id of a team
member.

If a port number is already in use, bind() will fail with EADDRINUSE. If you weren’t
using that port number before, someone else might have. Choose a different port number
in that case. Otherwise, it may be that the port number is still in use because of your
testing. Check that you have killed all processes you may have started while testing. Even
after you have killed your processes, binding to a port number may fail for an additional
2 min period if that port number recently accepted clients. This timeout is built into the
TCP protocol to avoid mistaking delayed packets sent on old connections for packets that
belong to new connections using the same port number.

Choose the SLO login id of one team member as relay server prefix. When running in
relay server mode, do not bind the socket to any port before connecting. This ‘auto-bind’

Created by G. Back (gback@cs.vt.edu) 6 Revision : 1.11 November 14, 2013

http://cs3214.cs.vt.edu:9011/files/index.html

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

strategy allows the OS to assign any available port, eliminating the potential for port
conflicts.

3 Strategy

Make sure you understand the roles of DNS host names, IP addresses, and port numbers
in the context of TCP communication. Study the roles of the necessary socket API calls.

You should exploit a layered design that separates your TCP support code from the HTTP
layer. Such a design will be crucial to easily implement the relay server mode while
minimizing the changes to the HTTP implementation.

For the TCP layer, make sure you handle short reads correctly, as discussed in lecture and
in the book. To avoid byte ordering related bugs, avoid setting addresses directly in your
program - use the getaddrinfo() function instead.

Since you will be using a multi-threaded design, use thread-safe versions of all functions.

Familiarize yourselves with the commands wget(1) and curl(1) and the specific flags
that show you headers and protocol versions. These programs can be extremely helpful
in debugging web servers.

Refresh your knowledge of strace(1), which is an essential tool to debug your server’s
interactions with the outside world. Use -s 1024 to avoid cutting off the contents of
reads and writes (or recv and send). Don’t forget -f to allow strace to follow spawned
threads. A trick to easily verify that your Content-Length computation is correct is to
issue the body of each HTTP response in a separate system call.

The book’s student site contains an implementation of a tiny web server you may use as a
starting point; you may also use the book’s implementation of robust I/O to handle short
reads. However, the book code is not implemented in a protocol-independent fashion.
Study the examples provided on the course website instead.

4 Grading

4.1 Coding Style

Your service must be implemented in the C language. You should follow proper coding
conventions with respect to documentation, naming, and scoping. You must check the
return values of all system calls and library functions.

We will pay particular attention to how you separated the implementation of HTTP from
your use of TCP sockets. We may use the helgrind checker to check your server for race

Created by G. Back (gback@cs.vt.edu) 7 Revision : 1.11 November 14, 2013

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

conditions. Your code should compile under -Wall without warnings, the use of the
-Werror flag as part of CFLAGS should have become a habit by now.

4.2 Submission

You should submit a .tar.gz file of your project, which must contain a Makefile. Your
project should build with ‘make clean all’ This command must build an executable
’sysstatd’ that must accept the following command line arguments:

• -p port When given, your web service must run in server mode, accepting HTTP
clients and serving HTTP requests on port ’port.’ Multiple connection must be sup-
ported.

• -r relayhost:port When given, your web service should connect to host ’re-
layhost’ on port ’port.’. It should accept both fully-qualified host names and IPv4
addresses in dot notation.

• -R path When given, ‘path’ specifies the root directory of your server, files in it are
reachable under the /files prefix.

Submit a file called ‘README’ that lists group members and briefly describes your DE-
SIGN.

Please test that ‘make clean’ removes all executables and object files. Issue ‘make clean’
before submitting to keep the size of the tar ball small. Please use the submit.pl script or
web page and submit as ’p6’. Only one group member need submit.

4.3 Online Demonstration and Grade Breakdown

The provided test script will test that you meet the minimum requirements only.

To demo the relay server as well as the file serving and synthetic load request capabil-
ity, you must schedule an online demo with teaching staff. If you’ve implemented relay
mode, start your server on a rlogin cluster machine and connect to a relay server. In addi-
tion, start your server on your EC2 machine. Email to cs3214-staff@cs.vt.edu the
URLs of the corresponding web pages that show the widget and synthetic load request
integration. Once you receive a reply that we verified the correct functioning, you may
shut down your service. You will be expected to fix any problems (including robustness
issues) that arise during the demo.

This project will count for 120 points; meeting the minimum requirements will yield 40
points. The remaining points will be awarded for documentation/coding style, the online
demo of your widget integration.

Created by G. Back (gback@cs.vt.edu) 8 Revision : 1.11 November 14, 2013

CS3214 Fall 2013 Project 5 - “The sysstatd Web Service”

4.4 Extra Credit

For 25 points of extra credit, implement your own relay server.

Good Luck!

References

[1] Douglas Crockford. Introduction to JSON. http://json.org/.

[2] Roy Fielding, Jim Gettys, Jeff Mogul, H. Frystyk, L. Masinter, P. Leach, and Tim
Berners-Lee. Rfc 2616: Hypertext transfer protocol – http/1.1. http://www.w3.org/-
Protocols/rfc2616/rfc2616.html.

[3] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-
ture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

[4] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly, 2007.

Created by G. Back (gback@cs.vt.edu) 9 Revision : 1.11 November 14, 2013

http://json.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

	Introduction
	Functionality
	System Status Web Service
	Serving Files
	Synthetic Load Requests
	Multiple Client Support
	Robustness
	Protocol Independence
	Relay Server
	Widgets
	Minimum Requirements
	Choice of Port Numbers and Relay Server Prefixes

	Strategy
	Grading
	Coding Style
	Submission
	Online Demonstration and Grade Breakdown
	Extra Credit

