
CS 3214 Sample Midterm (Spring 2010)

1/9

Sample Midterm (Spring 2010)

Solutions are shown in this style. This exam was given in Spring 2010.

1. Executing Programs on IA32 (30 pts)
The following questions relate to how programs are compiled for IA32.

a) (8 pts) Consider the following buggy program contained in a file sum.c

#include <stdio.h>

int
sum(int a, int b)
{
 int s = a + b;
 // return statement is missing
}

int
main()
{
 printf("%d\n", sum(1, 2));
}

i. (4 pts) When the program is compiled with ‘gcc –o sum sum.c’ and run,

it will output ‘3’. Explain why 3 is output!

Since no optimization level is specified, the compiler will emit code for all
statements it sees. This includes the computation of ‘s’ as the sum of ‘a’ and ‘b’.
‘s’ happens to be computed in register $eax, so it coincidentally becomes the
return value of sum.

ii. (4 pts) When the program is compiled with ‘gcc –O2 –o sum sum.c’

and run, it outputs a number such as -1074516556. Which analysis or
optimization on the part of the compiler causes the generation of code
that leads to this different result?

The compiler determines that ‘s’ is not used and thus does not emit code to
compute it - $eax in this case contains whichever value it had from the last time it
was used. Or, if this function is inlined, the compiler may completely remove the
function call since none of its computed values is used, then pass an uninitialized
value to printf() (essentially, whatever is in memory at the address where printf
expects its second argument).

b) (12 pts) Consider the following assembly code, which was produced by
gcc for a function ‘t’. The left column shows the result when compiling with

CS 3214 Sample Midterm (Spring 2010)

2/9

optimizations at level 1 (-O1).

IA 32 Code,compiled with –O1 C Code

t:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $4, %esp
 movl 8(%ebp), %ebx
 movl (%ebx), %eax
 testl %eax, %eax
 je .L2
 movl %eax, (%esp)
 call t
.L2:
 movl %ebx, (%esp)
 call visit
 movl 4(%ebx), %eax
 testl %eax, %eax
 je .L6
 movl %eax, (%esp)
 call t
.L6:
 addl $4, %esp
 popl %ebx
 popl %ebp
 ret

void t(struct node *node)
{
 if (node->left)
 t(node->left);
 visit(node);
 if (node->right)
 t(node->right);
}

Provide a C version of function t()!

Hint: t() accepts a pointer to this struct:

struct node {
 struct node *left;
 struct node *right;
}

c) (5 pts) Consider the following program:

#include <stdio.h>

int
mystery_function(int arg, ...)
{
 int * p = &arg;
 int r = 1;

 while (*p)
 r = r * *p++;

CS 3214 Sample Midterm (Spring 2010)

3/9

 return r;
}

int
main()
{
 printf("%d\n", mystery_function(5, 4, 3, 2, 1, 0));
}

What does this program output when run and compiled under gcc on IA32?

The function iterates over its arguments and multiplies them until it finds a 0, so
the output is 120. (Note that this code is not portable - use stdarg.h for portable
code as done in the exercise.)

d) (5 pts) Consider how compilers generate code for switch() statements in
C. Under which circumstances would a chain of if/else statements (shown
left) yield better performance than a switch statement (shown right)?

if (x == CHOICE1)
 f1();
else if (x == CHOICE2)
 f2();
else if (x == CHOICE3)
 f3();
else
 . . .

switch (x) {
case CHOICE1:
 f1(); break;
case CHOICE2:
 f2(); break;
case CHOICE3:
 f3(); break;
. . .
}

For the if-else chain to outperform the switch statement, the likelihood of x being
CHOICE1 must be much larger than the likelihood of x being CHOICE2, and so
on. In addition, it should be true that there are either few CHOICE values, or a
sparse distribution of CHOICE values, thus preventing the compiler from creating
a jump table.

2. Structs and Arrays (30 pts)

a) (3x5 pts) The following 3 functions operate either on nested or on
multi-level arrays of integers. Provide C versions of each function,
filling in the missing parameter and body:

access1:
 pushl %ebp
 movl %esp, %ebp
 imull $120, 12(%ebp), %edx
 movl 16(%ebp), %eax

int access1(int A[][30], int x, int y)
{
 return A[x][y];
}

CS 3214 Sample Midterm (Spring 2010)

4/9

 leal (%edx,%eax,4), %eax
 movl 8(%ebp), %edx
 movl (%eax,%edx), %eax
 popl %ebp
 ret

access2:
 pushl %ebp
 movl %esp, %ebp
 imull $120, 12(%ebp), %eax
 addl 8(%ebp), %eax
 popl %ebp
 ret

int * access2(int A[][30], int x)
{
 return A[x];
}

access3:
 pushl %ebp
 movl %esp, %ebp
 movl 12(%ebp), %edx
 movl 8(%ebp), %eax
 movl (%eax,%edx,4), %edx
 movl 16(%ebp), %eax
 movl (%edx,%eax,4), %eax
 popl %ebp
 ret

int access3(int *A[], int x, int y)
{
 return A[x][y];
}

Aside: the outermost dimension doesn’t matter, so you could have written int
A[anything][30], it doesn’t change what code is generated.

b) (15 pts) Consider the following piece of code:

#include <stdio.h>
struct alpha {
 int x;
 char a;
 int z;
 char b;
 char c;
 char d;
};
int main()
{
 int data[] = {8, 49, 0, 7, 4, 53, 6, 1, 0};
 struct alpha* ap = (struct alpha *) data;
 printf ("%d %c %d, %d %c %d\n", ap[0].x, ap[0].a, ap[0].z,
 ap[1].x, ap[1].a, ap[1].z);
}

i. (5 pts) Draw a picture of how the array “data” is laid out in
memory. On the same picture, indicate where all the elements of
ap[0] and ap[1]are stored.

CS 3214 Sample Midterm (Spring 2010)

5/9

data 8 0 0 0 49 0 0 0 0 0 0 0 7 0 0 0 4 0 0 0 53 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0
 ap[0].x ap[0].a ap[0].z .b .c .d ap[1].x ap[1].a ap[1].z .b .c .d

ii. (3 pts) What is the output of the above program?
Hint: ASCII code for character ‘0’ is 48.

8 1 0, 4 5 6

iii. (3 pts) How would you rearrange the elements of alpha so as to
minimize the amount of memory used to store it? Provide C code!

Any arrangement that groups the ‘char’ fields adjacent to each other
works, such as:

struct alpha {

int x;
 int z;
 char a;
 char b;
 char c;
 char d;
};

The size of the struct is reduced from 16 to 12.

iv. (4 pts) What will be the program output with your new version of

alpha?

For above code rearrangement,
8 49, 7 5 4

(Note that outputting a zero byte value (‘\0’) using %c will not produce any
output, nor advance the terminal’s cursor. You can see the 0 byte by
piping the output to the ‘od’ command.)

3. Buffer Overflows (28 pts)
In project 2, we explored how the lack of buffer bounds checks can allow a
malicious attacker to exploit a program vulnerability and execute dangerous
code. In this question, we will explore several techniques used to deter such
buffer overflow attacks.

a) (4 points) A proposed technique involves programming the memory
protection hardware to disallow execution of instructions fetched from
stack memory. Explain the rationale for this technique!

CS 3214 Sample Midterm (Spring 2010)

6/9

Buffer overflow attacks require that code provided by the attacker be executed. If
the overflowing buffer is located on the stack, the exploit code will be written
there. Not allowing execution of code located on the stack will thwart this type of
attack, even if the attacker succeeds in placing exploit code on the stack.

b) Another approach to avoiding buffer overflows is to place a random
“canary” word below the return address on the stack. A canary word is a
special value that, if changed, indicates that the return address may have
been compromised. Thus, if the return address is changed via a buffer
overflow, the canary is destroyed and the system can detect the attack.

i. (4 points) Why is it difficult for the attack code to compromise the
return address while leaving the canary intact?

gets() will place the exploit string consecutively in memory – since the return
address is located at a higher address than the canary word, the canary word is
destroyed if the return address is.

ii. (4 points) How would the code of the function, which the compiler

creates, need to be changed to make use of the canary?

On procedure entry, the canary word must be stored. When a return instruction is
executed, the canary word must be read and checked against the expected
value.

iii. (4 points) Consider the following code:

void good_func (void)
{
 printf(“This is the good function\n”);
}

void bad_func (void)
{
 printf(“This is the bad function\n”);
}

void func_caller (void (*func_ptr)(void))
{
 char buff[10];
 gets(buff); /* get input from user via unsafe func */
 func_ptr(); /* call function pointed to by func_ptr */
}

int main()
{

CS 3214 Sample Midterm (Spring 2010)

7/9

 func_caller (good_func);
}

In this code, main calls func_caller with a pointer good_func,
which then invokes this function using the passed pointer. If gets()
reads less than 10 bytes, the output of the program is “This is the
good function”. Based on your answer to part ii), discuss if the use
of a canary word could prevent an attacker from crafting an exploit
string that would cause the invocation of bad_func instead!

No it would not since the indirect function call occurs before the ‘ret’ instruction is
reached.

(If your answer to b) included the assumption that the compiler generates code
that checks the canary before each indirect function call as well as before
returning, the answer would be yes, because ‘func_ptr’ is located above the
canary on the stack.)

c) (4 points) Could the vulnerability described in part b) be avoided using
address space randomization, which is a technique that places a
program’s stack at randomly chosen addresses, which differ from run to
run?

The attack described in part b) iii) cannot, because it does not rely on knowing
the address of the current stack frame – unlike a conventional buffer overflow
attack in which the return address is overwritten to point to exploit code located
on the stack.
However, a generic stack overflow attack (such as the one you implemented in
Project 2), often can be prevented.

d) Assume that a program contains the following bug:

if (some rare error condition occurs) {
 int errorcode = 31;
 char errormsg[] = “Some Rare Error Occurred\n”;

printf(“Error: %d: %x”, errorcode, errormsg);
}

The correct format string would have been “Error: %d: %s”.

i. (4 pts) Is this bug exploitable, i.e., could an attacker use it to
achieve the execution of code under their control? Justify your
answer!

No, this bug does not allow the injection of code controlled by an attacker.

CS 3214 Sample Midterm (Spring 2010)

8/9

ii. (4 pts) Is this bug security-relevant, i.e., could it aid or amplify a
possible attack? Justify your answer!

Yes, if an attacker can trigger the ‘rare error condition,’ they will learn the address
of ‘errormsg[0]’, which is an address within the current stack frame. This
knowledge can help craft an exploit if there is a (separate) buffer overflow
vulnerability.

4. Optimization (12 pts)

Consider the following 2 versions of a function that computes the square root of a
number using Newton’s algorithm. The square root is written to the pointer
referred to by ‘root’, and the number of iterations is returned. Both versions are
nearly identical, except that the second version uses a local variable ‘x’ to hold
the intermediate values of the to-be-computed square root.

int square_root_newton(double n, double *root)
{
 double xn = 1.0;
 int niter = 0;

 do {
 *root= xn;
 xn = *root - (*root * *root - n) / (2 * *root);
 niter++;
 } while (fabs(xn - *root) > 1e-6);

 return niter;
}

int square_root_newton2(double n, double *root)
{
 double x, xn = 1.0;
 int niter = 0;

 do {
 x = xn;
 xn = x – (x * x - n) / (2 * x);
 niter++;
 } while (fabs(xn - x) > 1e-6);
 *root = x;
 return niter;
}

Assume that ‘fabs’ is implemented as a built-in that maps to a single instruction.
Will one version result in faster code than the other when compiled with an
optimizing compiler? If so, state which one. In either case, justify your answer!

CS 3214 Sample Midterm (Spring 2010)

9/9

No – the two versions result in identical code (tested on gcc IA32). The compiler
can and will keep *root in a register because there are no intervening
assignments that could change the value of *root. The inner loop updates ‘niter’
and ‘xn’, which are local variables – the compiler can determine that the value of
‘*root’ is not changed by those assignments, because ‘root’ cannot possibly point
to a local variable when the function is called.

