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Sample Midterm (Spring 2010) 
 
Solutions are shown in this style. This exam was given in Spring 2010. 
 

1. Executing Programs on IA32 (30 pts) 
The following questions relate to how programs are compiled for IA32. 
 

a) (8 pts) Consider the following buggy program contained in a file sum.c 
 
#include <stdio.h> 
 
int 
sum(int a, int b) 
{ 
    int s = a + b; 
    // return statement is missing 
} 
 
int 
main() 
{ 
    printf("%d\n", sum(1, 2)); 
} 

 
i. (4 pts) When the program is compiled with ‘gcc –o sum sum.c’ and run, 

it will output ‘3’. Explain why 3 is output! 
 

Since no optimization level is specified, the compiler will emit code for all 
statements it sees. This includes the computation of ‘s’ as the sum of ‘a’ and ‘b’. 
‘s’ happens to be computed in register $eax, so it coincidentally becomes the 
return value of sum. 

 
ii. (4 pts) When the program is compiled with ‘gcc –O2 –o sum sum.c’ 

and run, it outputs a number such as -1074516556. Which analysis or 
optimization on the part of the compiler causes the generation of code 
that leads to this different result? 
 

The compiler determines that ‘s’ is not used and thus does not emit code to 
compute it - $eax in this case contains whichever value it had from the last time it 
was used. Or, if this function is inlined, the compiler may completely remove the 
function call since none of its computed values is used, then pass an uninitialized 
value to printf() (essentially, whatever is in memory at the address where printf 
expects its second argument). 
 

b) (12 pts) Consider the following assembly code, which was produced by 
gcc for a function ‘t’. The left column shows the result when compiling with 
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optimizations at level 1 (-O1). 
 

IA 32 Code,compiled with –O1 C Code 

t: 
    pushl   %ebp 
    movl    %esp, %ebp 
    pushl   %ebx 
    subl    $4, %esp 
    movl    8(%ebp), %ebx 
    movl    (%ebx), %eax 
    testl   %eax, %eax 
    je  .L2 
    movl    %eax, (%esp) 
    call    t 
.L2: 
    movl    %ebx, (%esp) 
    call    visit 
    movl    4(%ebx), %eax 
    testl   %eax, %eax 
    je  .L6 
    movl    %eax, (%esp) 
    call    t 
.L6: 
    addl    $4, %esp 
    popl    %ebx 
    popl    %ebp 
    ret 

void t(struct node *node)  
{ 
    if (node->left) 
        t(node->left); 
    visit(node); 
    if (node->right) 
        t(node->right); 
} 

 
 
Provide a C version of function t()! 
 
Hint: t() accepts a pointer to this struct: 

 
struct node { 
 struct node *left; 
 struct node *right; 
} 

 
c) (5 pts) Consider the following program: 

 
#include <stdio.h> 
 
int 
mystery_function(int arg, ...) 
{ 
    int * p = &arg; 
    int   r = 1; 
 
    while (*p) 
        r = r * *p++; 
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    return r; 
} 
 
int 
main() 
{ 
    printf("%d\n", mystery_function(5, 4, 3, 2, 1, 0)); 
}  

 
What does this program output when run and compiled under gcc on IA32? 
 
The function iterates over its arguments and multiplies them until it finds a 0, so 
the output is 120. (Note that this code is not portable - use stdarg.h for portable 
code as done in the exercise.) 
 

d) (5 pts) Consider how compilers generate code for switch() statements in 
C. Under which circumstances would a chain of if/else statements (shown 
left) yield better performance than a switch statement (shown right)?  
 
if (x == CHOICE1) 
  f1(); 
else if (x == CHOICE2) 
  f2(); 
else if (x == CHOICE3) 
  f3(); 
else  
  . . . 

switch (x) { 
case CHOICE1: 
     f1(); break; 
case CHOICE2: 
     f2(); break; 
case CHOICE3: 
     f3(); break; 
. . . 
} 

 
For the if-else chain to outperform the switch statement, the likelihood of x being 
CHOICE1 must be much larger than the likelihood of x being CHOICE2, and so 
on. In addition, it should be true that there are either few CHOICE values, or a 
sparse distribution of CHOICE values, thus preventing the compiler from creating 
a jump table.  
 

2. Structs and Arrays (30 pts) 
 

a) (3x5 pts) The following 3 functions operate either on nested or on 
multi-level arrays of integers. Provide C versions of each function, 
filling in the missing parameter and body: 
 
 

access1: 
    pushl   %ebp 
    movl    %esp, %ebp 
    imull   $120, 12(%ebp), %edx 
    movl    16(%ebp), %eax 

int access1(int A[][30], int x, int y)  
{ 
  return A[x][y]; 
} 
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    leal    (%edx,%eax,4), %eax 
    movl    8(%ebp), %edx 
    movl    (%eax,%edx), %eax 
    popl    %ebp 
    ret 

access2: 
    pushl   %ebp 
    movl    %esp, %ebp 
    imull   $120, 12(%ebp), %eax 
    addl    8(%ebp), %eax 
    popl    %ebp 
    ret 

int * access2(int A[][30], int x) 
{ 
  return A[x]; 
} 

access3: 
    pushl   %ebp 
    movl    %esp, %ebp 
    movl    12(%ebp), %edx 
    movl    8(%ebp), %eax 
    movl    (%eax,%edx,4), %edx 
    movl    16(%ebp), %eax 
    movl    (%edx,%eax,4), %eax 
    popl    %ebp 
    ret 

int access3(int *A[], int x, int y) 
{ 
  return A[x][y]; 
} 

 
Aside: the outermost dimension doesn’t matter, so you could have written int 
A[anything][30], it doesn’t change what code is generated. 
 

b) (15 pts) Consider the following piece of code: 
 

#include <stdio.h> 
struct alpha { 
 int x; 
 char a; 
 int z; 
 char b; 
 char c; 
 char d; 
}; 
int main() 
{ 
 int data[] = {8, 49, 0, 7, 4, 53, 6, 1, 0}; 
 struct alpha* ap = (struct alpha *) data; 
 printf ("%d %c %d, %d %c %d\n", ap[0].x, ap[0].a, ap[0].z, 
                                      ap[1].x, ap[1].a, ap[1].z); 
} 
 

i. (5  pts) Draw a picture of how the array “data” is laid out in 
memory.  On the same picture, indicate where all the elements of 
ap[0] and ap[1]are stored. 
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data 8 0 0 0 49 0 0 0 0 0 0 0 7 0 0 0 4 0 0 0 53 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 
 ap[0].x ap[0].a ap[0].z .b .c .d ap[1].x ap[1].a ap[1].z .b .c .d  
 

ii. (3 pts) What is the output of the above program?  
Hint: ASCII code for character ‘0’ is 48. 

8 1 0, 4 5 6 
 

iii.  (3 pts) How would you rearrange the elements of alpha so as to 
minimize the amount of memory used to store it? Provide C code! 

Any arrangement that groups the ‘char’ fields adjacent to each other 
works, such as: 
 
struct alpha { 

int x; 
 int z; 
 char a; 
 char b; 
 char c; 
 char d; 
};  

 
The size of the struct is reduced from 16 to 12. 
  
iv. (4 pts) What will be the program output with your new version of 

alpha? 

For above code rearrangement,  
8 49, 7 5 4 
 
(Note that outputting a zero byte value (‘\0’) using %c will not produce any 
output, nor advance the terminal’s cursor. You can see the 0 byte by 
piping the output to the ‘od’ command.) 
 

 

3. Buffer Overflows (28 pts) 
In project 2, we explored how the lack of buffer bounds checks can allow a 
malicious attacker to exploit a program vulnerability and execute dangerous 
code. In this question, we will explore several techniques used to deter such 
buffer overflow attacks. 
 

a) (4 points) A proposed technique involves programming the memory 
protection hardware to disallow execution of instructions fetched from 
stack memory. Explain the rationale for this technique! 
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Buffer overflow attacks require that code provided by the attacker be executed. If 
the overflowing buffer is located on the stack, the exploit code will be written 
there. Not allowing execution of code located on the stack will thwart this type of 
attack, even if the attacker succeeds in placing exploit code on the stack. 
 

b) Another approach to avoiding buffer overflows is to place a random 
“canary” word below the return address on the stack. A canary word is a 
special value that, if changed, indicates that the return address may have 
been compromised.  Thus, if the return address is changed via a buffer 
overflow, the canary is destroyed and the system can detect the attack.  
 

i. (4 points) Why is it difficult for the attack code to compromise the 
return address while leaving the canary intact? 

gets() will place the exploit string consecutively in memory – since the return 
address is located at a higher address than the canary word, the canary word is 
destroyed if the return address is. 

 
ii. (4 points) How would the code of the function, which the compiler 

creates, need to be changed to make use of the canary? 

On procedure entry, the canary word must be stored. When a return instruction is 
executed, the canary word must be read and checked against the expected 
value. 
 

iii. (4 points) Consider the following code: 
 
void good_func (void) 
{ 
   printf(“This is the good function\n”); 
} 
 
void bad_func (void) 
{ 
   printf(“This is the bad function\n”); 
} 
 
void func_caller (void (*func_ptr)(void)) 
{ 
   char buff[10]; 
   gets(buff); /* get input from user via unsafe func */ 
   func_ptr(); /* call function pointed to by func_ptr */ 
} 
 
int main() 
{ 
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   func_caller (good_func);  
} 

 
In this code, main calls func_caller with a pointer good_func, 
which then invokes this function using the passed pointer. If gets() 
reads less than 10 bytes, the output of the program is “This is the 
good function”. Based on your answer to part ii), discuss if the use 
of a canary word could prevent an attacker from crafting an exploit 
string that would cause the invocation of bad_func instead!  

 
No it would not since the indirect function call occurs before the ‘ret’ instruction is 
reached. 
 
(If your answer to b) included the assumption that the compiler generates code 
that checks the canary before each indirect function call as well as before 
returning, the answer would be yes, because ‘func_ptr’ is located above the 
canary on the stack.) 
 

c) (4 points) Could the vulnerability described in part b) be avoided using 
address space randomization, which is a technique that places a 
program’s stack at randomly chosen addresses, which differ from run to 
run? 
 

The attack described in part b) iii) cannot, because it does not rely on knowing 
the address of the current stack frame – unlike a conventional buffer overflow 
attack in which the return address is overwritten to point to exploit code located 
on the stack. 
However, a generic stack overflow attack (such as the one you implemented in 
Project 2), often can be prevented.  

 
d) Assume that a program contains the following bug: 

 
if (some rare error condition occurs) { 
      int errorcode = 31; 
      char errormsg[] = “Some Rare Error Occurred\n”; 

printf(“Error: %d: %x”, errorcode, errormsg); 
} 
 

The correct format string would have been “Error: %d: %s”.  
 

i. (4 pts) Is this bug exploitable, i.e., could an attacker use it to 
achieve the execution of code under their control? Justify your 
answer! 

 
No, this bug does not allow the injection of code controlled by an attacker. 
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ii. (4 pts) Is this bug security-relevant, i.e., could it aid or amplify a 
possible attack? Justify your answer! 
 

Yes, if an attacker can trigger the ‘rare error condition,’ they will learn the address 
of ‘errormsg[0]’, which is an address within the current stack frame. This 
knowledge can help craft an exploit if there is a (separate) buffer overflow 
vulnerability. 

 

4. Optimization (12 pts) 
 
Consider the following 2 versions of a function that computes the square root of a 
number using Newton’s algorithm. The square root is written to the pointer 
referred to by ‘root’, and the number of iterations is returned. Both versions are 
nearly identical, except that the second version uses a local variable ‘x’ to hold 
the intermediate values of the to-be-computed square root.  

 
int square_root_newton(double n, double *root) 
{ 
  double xn = 1.0; 
  int niter = 0; 
 
  do { 
      *root= xn; 
      xn = *root - (*root * *root - n) / (2 * *root); 
      niter++; 
  } while (fabs(xn - *root) > 1e-6); 
   
  return niter; 
} 

int square_root_newton2(double n, double *root) 
{ 
  double x, xn = 1.0; 
  int niter = 0; 
 
  do { 
      x = xn; 
      xn = x – (x * x - n) / (2 * x); 
      niter++; 
  } while (fabs(xn - x) > 1e-6); 
  *root = x; 
  return niter; 
} 

 
Assume that ‘fabs’ is implemented as a built-in that maps to a single instruction. 
Will one version result in faster code than the other when compiled with an 
optimizing compiler? If so, state which one. In either case, justify your answer! 
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No – the two versions result in identical code (tested on gcc IA32). The compiler 
can and will keep *root in a register because there are no intervening 
assignments that could change the value of *root. The inner loop updates ‘niter’ 
and ‘xn’, which are local variables – the compiler can determine that the value of 
‘*root’ is not changed by those assignments, because ‘root’ cannot possibly point 
to a local variable when the function is called.  


