
CS 3214 Spring 2012 Midterm Solution

1/15

CS 3214 Midterm Solution

A total of 86 students took the midterm in the two sections. The table below
shows a statistical summary of each problem and who graded the problem. If you
have questions, contact the person who graded the respective problem first.
Students who scored below 25 are at risk of failing the class even if they
otherwise meet minimum requirements; they will need to show improvement
taking the final exam. The histogram shows the distribution of scores across both
the sections.

 1 2 3 4 Total
Median 6.5 15.0 13.5 16.5 47.5
Average 6.8 14.6 12.2 16.1 49.7
StDev 4.7 5.1 6.7 6.6 17.2
Min 0 3 1 4 9
Max 18 25 25 29 91
Possible 20 25 25 30 100
Grader(s) Hari (a)-(b) Ian

(c) Pat
Ruslan (a)-(e) Ali

(f)-(g) Dennis

Solutions are shown in this style.

Grading Comments are shown in this style.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

0-‐10	 11-‐20	 21-‐30	 31-‐40	 41-‐50	 51-‐60	 61-‐70	 71-‐80	 81-‐90	 91-‐100	

CS3214	 (Combined)	

CS 3214 Spring 2012 Midterm Solution

2/15

1. Stack Organization (20 points)
The assembly language code in the IA32 architecture for a C function is shown
below.

 movl $0, -4(%ebp)
 jmp L2
L3:
 addl $1, -4(%ebp)
L2:
 movl -4(%ebp), %eax
 addl 8(%ebp), %eax
 movzbl (%eax), %eax
 testb %al, %al
 jne L3
 movl 12(%ebp), %eax
 movl -4(%ebp), %edx
 leal (%edx,%eax), %eax
 addl 16(%ebp), %eax

(a) (6 points) Deduce the return value and the argument(s) from this assembly
language code and write the C declaration for the function. In the assembly
language code the entry and exit code is not shown.

int function(char* p1, int p2, int p3)

Most points were given for correctly determining the number
and type of arguments. Smaller credit was given for
correctly determining the return type.

(b) (6 points) Suppose a function g is partially defined as follows:

 void g(int x, double y) {

 int z[3];
 struct {
 int a;
 char b[8];
 double c;
 } s;
 ….
 }

Ignoring other factors, show the assembly language entry code of this function
for the IA32 architecture.

CS 3214 Spring 2012 Midterm Solution

3/15

pushl %ebp // save base pointer
movl %sp,%ebp // create new stack frame
subl $0x20, %sp // allocate space in new frame

About half of the points were given for correctly setting
the new stack frame. The remaining points were given for
analyzing the amount of space needed in the new stack frame
and adjusting the stack pointer accordingly.

Suppose a function h is partially defined as follows:

char* h(int x) {

 int a[10];
 …
 }

(c) (3 points) Draw a diagram showing the runtime stack when function h is
being executed. Your diagram must include the parameter x and the local
variable a.

Credit was given for showing the return address and saved
base pointer, the correct ordering of these elements, and
for showing all the elements required.

(d) (3 points) What assembly language code in the IA32 architecture would be
used so that the function returns the pointer to the next instruction to be executed
in the caller when the function h returns?

movl 4(%ebp),%eax

x

return addr

saved %ebp

array a

CS 3214 Spring 2012 Midterm Solution

4/15

Credit was given for using the correct register for the
return value, for using the correct offset, and for using
the base pointer register as a base address.

(e) (2 points) For the specific function h defined in part (c) show the C language
statement that would achieve the same result (i.e., returns the pointer to the next
instruction to be executed in the caller).

return a[11];

Credit was given for using out of bounds array indexing to
reach the return address; partial credit was given for
using negative indexing (implying a wrong idea about the
layout of the array in memory); padding that might have
been part of the answer for part (c) was not considered as
wrong.

CS 3214 Spring 2012 Midterm Solution

5/15

2. Linking and Loading (25 pts)

As shown below, the file f.c defines a function f whose code refers to the variable
x that is not a local variable or a parameter. The file g.c defines a function g
whose code refers to the variable x that is not a local variable or a parameter.

//file f.c
// declaration for x – column a below

void f(int a){
 …
 x = …
}

//file g.c
// declaration for x – in column b below

void g(char* p){
 …
 x = …
}

(a) (9 points) The following table below shows how the variable x is defined in
each file. For each row in the table indicate in column (c) whether the two
functions at run-time refer to the SAME identifier (memory location) or to
DIFFERENT identifiers (memory locations) or indicate in column (d) if there is a
linking ERROR.

(a) declaration in f.c (b) declaration in g.c (c) SAME or
DIFFERENT (d) ERROR?

int x; extern int x; SAME

int x = 0; extern int x; SAME

int x = 0; int x = 0 X

static int x; static int x DIFFERENT

static int x; static double x; DIFFERENT

static int x; extern int x; X

int x = 0; int x = 1; X

int x; double x; SAME

int x = 0; double x = 0.0; X

Approximately one point of credit was given for each
correct answer.

(b) (10 points) The next page shows C code and the corresponding object
module. Determine what instructions in the .text segment and what data in the
.data and .bss segments will need to be modified by the linker when the module
is relocated. Draw a box around the specific bytes that will be modified. An
example of this is shown in line 6 the object module listing. For each box,

CS 3214 Spring 2012 Midterm Solution

6/15

describe in words what should appear in that box at run-time (e.g., the box
shown would be described as “the address of x”). Write the descriptions at the
end of the next page.

C code
 extern int x;

extern int f1(int* yp);
int y = 0;
int* xp = &x;

int f2(void) {

 x = x + 1;
 f1(xp);
 return x + y;
}

Object File
Disassembly of section .text:

00000000 <_f2>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 83 ec 18 sub $0x18,%esp
 6: 83 05 00 00 00 00 01 addl $0x1,0x0
 d: a1 00 00 00 00 (1) mov 0x0,%eax
 12: 89 04 24 mov %eax,(%esp)
 15: e8 00 00 00 00 (2) call 1a <_f2+0x1a>
 1a: a1 00 00 00 00 (3) mov 0x0,%eax
 1f: 03 05 00 00 00 00 (4) add 0x0,%eax
 25: c9 leave
 26: c3 ret
 27: 90 nop
Disassembly of section .data:

00000000 <_xp>:
 0: 00 00 (5)
 ...
Disassembly of section .bss:

00000000 <_y>:
 0: 00 00
 ...

(1) address of xp
(2) entry point of f1
(3) address of x
(4) address of y

CS 3214 Spring 2012 Midterm Solution

7/15

(5) address of x

Equal credit was given for each correct answer. The entry
in the .bss section was not graded.

(c) (6 points) There are three points in time when linking can be done. Briefly
describe the form of linking that takes place at each of these three points. For
each form of linking describe one advantage of using that form of linking.

Linking Time Advantage
static no run-time overhead

dynamic linking at
load time

shared across processes/address
spaces
less disk/memory space used
easier updates to libraries (no re-
linking needed)

dynamic linking at run
time

program controlled
most flexible form of choosing
libraries
pluggable software architectures

Equal credit was given for each answer. Multiple advantages
are shown above to indicate that there were a variety of
correct answers, but only one advantage was required in
each case.

CS 3214 Spring 2012 Midterm Solution

8/15

3. Optimization and Locality (25 pts)

The code snippet shown below computes a measure of how clustered the data in
an array is by squaring the difference between each data point and the average
of the data. The data is in an array named a. The size of the array and the
average of the data is computed by two utility functions, length(a) and
average(a), respectively.

int fit = 0;

for(i=0; i<length(a); i++) {

 fit = fit + pow(a[i] – average(a), 2);

}

(a) (4 points) Name a machine-independent optimization that can be applied to
the above code and show the resulting code.

Code hoisting – moving expensive, invariant operations out
of the loop body.

int ln = length(a);
double av = average(a);

for(i=0; i<ln; i++) {

 fit = fit + pow(a[i] – av, 2);
}

Credit was assigned for correctly naming (or describing) a
machine-independent optimization. Equal credit was assigned
for showing correctly revised code.

(b)(8 points) Name a second optimization that can be applied to your answer in
part (a) and show the resulting code.

Loop unrolling

for(i=0; i<ln; i=i+2) {
 fit = fit
 + pow(a[i] – av, 2)
 + pow(a[i+1] – av, 2);}
if (i == ln)
 fit = fit + pow(a[ln]-av,2)

Multiple accumulators

for(i=0; i<ln; i=i+2) {
 fit1 = fit1 + pow(a[i]–av,2);
 fit2 = fit2 + pow(a[i+1]–av,2);}
if (i == ln)
 fit1 = fit1 + pow(a[ln]-av,2);
fit = fit1 + fit2;

CS 3214 Spring 2012 Midterm Solution

9/15

Two solutions are shown above but only one is required.
Either (or an equivalent) method was acceptable for credit.
Credit was given for correctly naming (or describing) the
method. In the cases shown above, some credit was also
assigned for correctly handling last case after loop
termination.

 For the following code:

int x[2][128];
int i;
int sum = 0;

for (i = 0; i < 128; i++) {
 sum += x[0][i] * x[1][i];
}

Assume this code is executed under the following conditions:

• sizeof(int) = 4.
• Array x begins at memory address 0x0 and is stored in row-major order.
• The cache is initially empty.
• The only memory accesses are to the entries of the array x. All other

variables are stored in registers.

(c) (8 points) What is the miss rate for a cache of size 512 bytes that is direct
mapped and has 16-byte cache blocks. A direct mapped cache is one in which
there is only one line in each set. In this problem the single line contains a 16-
byte block.

Miss rate is 64/256 = 25%.

Significant credit was given for a clear indication that
the code will generate 1 miss for each group of 4 ints in
row-major order. Additional credit was given for a clear
indication that there will be 64 such blocks of 4 ints
leading to 64 misses in total. Credit was also given for
determining the miss rate.

(d) (2 points) What is the miss rate for the same cache as in (a) but of size 1024.

Same answer as in (c) – increase in cache size has no
effect in this case.

CS 3214 Spring 2012 Midterm Solution

10/15

(e) (3 points) What is the miss for the same cache as in (a) but with 32-byte
cache blocks.

Miss rate is 32/256 = 12.5%

Significant credit was given for a clear indication that
the code will generate 1 miss for each group of 8 ints in
row-major order. Additional credit was given for a clear
indication that there will be 32 such blocks of 8 ints
leading to 32 misses in total. Credit was also given for
determining the miss rate.

CS 3214 Spring 2012 Midterm Solution

11/15

4. Processes and Job Control (30 pts)
(a) (3 points) Suppose there is only one process, A, executing in a system. At a
given point A performs a blocking I/O operation. Complete the diagram below
(like the one used in class) to show the user mode and kernel mode transitions.
Time moves from left to right in the diagram.

Credit was giving for showing the transition from user to
kernel mode and some meaningful labeling of the added parts
of the diagram.

(b) (2 points) Redraw the diagram from part (a) below to show one possible
scenario for the case where a second process, B, was in the READY state when
A performed its I/O operation.

Credit was given for showing the blocking of A, the context
switch to B, and the resumption later (in this case) of A
when the I/O is completed. Other valid scenarios were also
given credit.

(c) (2 points) Redraw the diagram from part (b) to show another possible
scenario.

user

kernel

A

I/O done A blocked

user

kernel

A

I/O done context sw.

B

context sw.

CS 3214 Spring 2012 Midterm Solution

12/15

Credit was given for showing the blocking of A, the context
switch to B, and the resumption later (in this case) of B
when the I/O is completed. Other valid scenarios were also
given credit. The question mistakenly pointed to (a)
instead of (b), however most students correctly interpreted
the question. Credit was also given if students tried to
show some scenario for (a).

(d) (4 points) Fill in the table below to name a system call that has the described
effect. If no such system call exists write NONE.

always causes a context switch exit()

always causes a mode switch read, write, (all)

may not necessarily causes a context
switch

read, write (many others)

may not necessarily causes a mode
switch

NONE

Equal credit was given to each of the four answers. In the
middle two cases many answers are possible. Any valid
answer was given credit in these two cases.

 (e) Suppose two processes are communicating by a Unix pipe. Describe under
what circumstances the following situations occur.

(i) (3 points) The process performing a read from a pipe causes a context switch.

The pipe is empty. In this case the reading process is
forced to wait (block) for data to become available in the
pipe through a writing process.

user

kernel

A

I/O done context sw.

B

CS 3214 Spring 2012 Midterm Solution

13/15

Credit was given for correctly describing that the context
switch was caused by the pipe having no available data to
complete the read operation.

(ii) (3 points) The processes performing a write to a pipe causes a context switch.

The pipe is full. In this case the writing process is
forced to wait (block) until a sufficient amount of the
data has been removed from the pipe by a reading process.

Credit was given for correctly describing that the context
switch was caused by the pipe having reached its capacity
and, therefore, could not complete the write operation
until a read operation was performed by another process to
consume sufficient data.

In the code below, a parent process creates n processes running the same
search program, each process searches a different file (i.e. the ith child process
will search the ith file). For ease of job control the parent wants all of the child
processes to be in the same process group. Only the critical parts of the code are
shown. This code is incorrect.

main() {

int group = 0;

for(i=0; i<n; i++) {
 pid = fork();
 if (pid == 0) { /* each child process … */
 pid = getpid(); /* get’s its process pid */
 if (group==0) { /* first child defines the group */
 group = pid;
 setpgrp(pid, group);
 }
 else setpgrp(pid, group); /* other’s use group id */

 execv("search", …); /* child adopts search code */
 }
}
/* parent continues here after loop */

(f) (8 points) Explain briefly why this code is incorrect.

The code is incorrect because:

CS 3214 Spring 2012 Midterm Solution

14/15

(1) each child process has a copy of the parent’s address
space in which the value of group is always zero (0). – 5
points

(2) Thus, each child will put itself in its own group
rather than them being in the same process group – 3 points

Substantial credit was given for given the core reason for
the code’s incorrect operation: namely, the incorrect
assumption about the value of group being communicated to
the children. Credit was also given for recognizing the
effect of this error on the creation of process groups.
Because only critical parts of the code are shown,
identification of missing declarations or initializations
were not considered as acceptable errors.

(g) (5 points) Show a corrected version of the code that work properly (use the
back of this page if necessary).

main() {

int group = 0;

//launch first child

pid = fork();
if (pid==0){
 pid = getpid(); /* first child defines the group */
 setpgrp(pid, pid);
 execv("search", …); /* child adopts search code */
}

// parent continue here after launching first child

group = pid; /* define group for other children */

for(i=2; i<n; i++) {
 pid = fork();
 if (pid == 0) { /* each other child process … */
 pid = getpid(); /* get’s its process pid */
 setpgrp(pid, group); /* … and puts itself in group */
 execv("search", …); /* child adopts search code */
 }
}

/* parent continues here after loop */

CS 3214 Spring 2012 Midterm Solution

15/15

Credit was given for any of several alternative strategies
for correctly putting the child processes in their own
separate (from the parent process) group. Coding details
were not considered in the grading.

