
CS 3214 Spring 2013  Midterm 

1/14 

CS 3214 Midterm 
 
This is a closed-book, closed-internet, closed-cell phone and closed-computer exam.  
However, you may refer to your sheet of prepared notes. Your exam should have 14 
pages with 4 topics totaling 100 points. You have 75 minutes. Please write your 
answers in the space provided on the exam paper. If you unstaple your exam, please 
put your initials on all pages.  You may use the back of pages if necessary, but please 
indicate if you do so we know where to look for your solution.  In three places you are 
asked to write your answers on the back of the pages. You may ask us for additional 
pages of scratch paper.  You must submit all sheets you use with your exam.  However, 
we will not grade what you scribble on your scratch paper unless you indicate you want 
us to do so.  Answers will be graded on correctness and clarity. The space in which to 
write answers to the questions is kept purposefully tight, requiring you to be concise. 
You will lose points if your solution is more complicated than necessary or if you provide 
extraneous, but incorrect information along with a correct solution.  
 
 
Name (printed) ___________________________________________________ 
 
 
I accept the letter and the spirit of the Virginia Tech undergraduate honor code – I will 
not give and have not received aid on this exam. 
 
 

(signed) _____________________________________________ 
 
 

# Problem Points Score 

I Stack Protocol 29  

II Optimization 16  

III Processes and Signals 40  

IV Threads and Synchronization 15  

 Total 100  

 



CS 3214 Spring 2013  Midterm 

2/14 

I. Stack Protocol (29 points) 
 

     The following C code involves two functions, word_sum which has a structure as a parameter 
and another as its return value, and prod which calls word_sum: 

 
typedef struct { 
   int a; 
   int *p; 
} str1; 

typedef struct { 
   int sum; 
   int diff; 
} str2; 

 
str2 word_sum(str1 s1) { 
   str2 result; 
   result.sum = s1.a + *s1.p; 
   result.diff = s1.a - *s1.p; 
   return result; 
} 
 
int prod(int x, int y) { 
   str1 s1; 
   str2 s2; 
   s1.a = x; 
   s1.p = &y; 
   s2 = word_sum(s1); 
   return s2.sum * s2.diff; 
} 

 

gcc generates the following code for the two functions: 
 
word_sum:                   #  1 
    pushl  %ebp             #  2 
    movl   %esp, %ebp       #  3 
    pushl  $ebx             #  4 
    movl    8(%ebp), %eax   #  5 
    movl   12(%ebp), %ebx   #  6 
    movl   16(%ebp), $edx   #  7 
    movl   (%edx), %edx     #  8 
    movl   %ebx, %ecx       #  9 
    subl   %edx, %ecx       # 10 
    movl   %ecx, 4(%eax)    # 11 
    addl   %ebx, %edx       # 12 
    movl   %edx, (%eax)     # 13 
    popl   %ebx             # 14 
    popl   %ebp             # 15 
    ret    $4               # 16 
 
 
 
 

prod:                       #  1 
    pushl  %ebp             #  2 
    movl   %esp, %ebp       #  3 
    subl   $20, %esp        #  4 
    leal   12(%ebp), %edx   #  5 
    leal   -8(%ebp), %ecx   #  6 
    movl    8(%ebp), %eax   #  7 
    movl   %eax, 4(%esp)    #  8 
    movl   %edx, 8(%esp)    #  9 
    movl   %ecx, (%esp)     # 10 
    call   word_sum         # 11 
    subl   $4, %esp         # 12 
    movl   -4(%ebp), %eax   # 13 
    imull  -8(%ebp), %eax   # 14 
    leave                   # 15 
    ret                     # 16



CS 3214 Spring 2013  Midterm 

3/14 

     The instruction ret $4 is like a normal ret instruction, except that it increments the stack 
pointer by 8 (4 for the return address plus 4 more), rather than 4. 

 
(a) (10 points) Diagram the stack frame for the function prod, as it would exist immediately before 

the call to word_sum in line 11 of prod.  Provide a description of the contents of each word in 
the stack frame. 

 
Answer:   

address value inferred from 
. . .   
ebp + 12 y  
ebp + 8 x  
 return-to address  
ebp old ebp  
ebp – 4 s2.p prod # 10 
ebp – 8 s2.a prod # 10 
esp + 8 s1.p prod # 9 
esp + 4 s1.a prod # 8 
esp &s2 == ebp - 4 prod # 10 

 
 
 
 
 
(b) (9 points) From lines 5-7 in word_sum, it appears that three values are being retrieved from the 

stack, even though the function has only one parameter.  Describe what these three values are. 
 
Answer:   
 at ebp + 8 we have a pointer to a struct that receives the return values 
 at ebp + 12 we have s1.a 
 at ebp + 16 we have s1.p 
 
 

(c) (5 points) Describe the general strategy illustrated here for passing a structure as a parameter to a 
function. 

 
Answer: 
 
The values of the fields of the structure are placed, in reverse order, on the stack in the 
frame of the calling function. 
 
This is clearly analogous to the way a sequence of simple parameters are passed via the 
caller's stack frame. 
 
(In this case, the mechanism is adjusted because the return value is also a structure.) 

 



CS 3214 Spring 2013  Midterm 

4/14 

 
 
 
 
 
(d) (5 points) Describe the general strategy illustrated here for handling a structure as a return value 

from a function. 
 

Answer: 
 
Space for the returned structure is provided within the caller's frame. 
 
A pointer to the first word of that space is provided to the called function on the stack, 
within the caller's frame, placed as if it were the first parameter to the called function (i.e., 
after the values of the actual parameters). 
 
The called function can then use that pointer to set the fields of the structure, within the 
caller's frame, before the called function returns. 
 
 



CS 3214 Spring 2013  Midterm 

5/14 

II. Optimization (16 points) 
 
Consider the following C function f1() and its compiled code: 

 
 
 
// Preconditions:   
//       px, py and pz are not NULL 
//       px != py 
// 
 
void f1(int *px, int *py, int *pz) 
{ 
 
   *py = *py + *px; 
   *py = *py - *px; 
   *pz = *py; 
} 

 

f1: 
 pushl %ebp 
 movl %esp, %ebp 
 movl 12(%ebp), %edx 
 movl 8(%ebp), %ecx 
 movl (%edx), %eax 
 addl %eax, %eax 
 addl (%ecx), %eax 
 movl %eax, (%edx) 
 subl (%ecx), %eax 
 movl %eax, (%edx) 
 movl 16(%ebp), %edx 
 movl %eax, (%edx) 
 popl %ebp 
 ret 

 

 
 
The gcc compiler, even with the switch –O2, does not apply a seemingly obvious optimization to f1().   
 
 
 

(a) (4 points) What is this “seemingly obvious optimization”? 
 
Answer:   
 
Naively, the effect of the function seems to be to make two changes to *py that cancel each 
other out, and then assign the original value of *py to *pz.  So the obvious optimization 
would be to eliminate everything except the final assignment to *pz.  Hence we would have 
seen only fetches of py and *py and pz, and then a write of *py to *pz. 

 
 
(b) (6 points) Explain why gcc cannot apply it in this case. 
 
Answer:  gcc has no way to know that px and py do not point to the same target.  If so, then 
the result of the function would be to reset *py to 0 and assign that value to *pz. 
 

 
 
 
 
 



CS 3214 Spring 2013  Midterm 

6/14 

(c) (6 points) The ISO-C99 Standard added the keyword restrict to the language.  restrict can only 
be applied in declarations of pointer variables, and means that the pointer to which it is applied is the only 
means of accessing the data to which it points within the scope in which that pointer is declared.  Could 
the use of restrict alter gcc’s behavior in part (a)?  If so, explain minimal changes you could make 
involving the use of restrict.  If not, explain why not. 

 
Answer: 
 
The best answer is no, for a subtle reason.  The precondition states that px != py, which implies that they 
cannot be aliases.  Unfortunately, nothing is said about relationships involving pz.  We could still have either 
px or py equaling pz, just not both. 
 
That means we do not have enough information to justify placing restrict on any of the three pointers, and 
therefore, no way to enable the optimization. 
 
(That was an error in the statement of the problem; I intended to modify the precondition.) 
 
The less good answer is:  change the function interface to: 
 
 void f1(int *px, int* restrict py, int *pz); 
 
or 
 
 void f1(int* restrict px, int *py, int *pz); 
 
Either would be sufficient to allow the optimization described above to be performed.  Either way, px and py 
cannot alias the same target, and that eliminates the scenario described previously. 
 
Notes:   
 
It would make no difference to the final state if px or py aliased the same target as pz, since the last step in 
the execution is to assign a value to *pz, and that value is independent of whatever value *pz may have held 
previously. 
 
Moreover, the application of restrict to px or py is (partially) justified by the precondition for the 
function; we have no information that would justify applying restrict to pz. 
 

 
 



CS 3214 Spring 2013  Midterm 

7/14 

III. Processes and Signals (40 points) 
 

(a) (13 points) Interpret the diagram below as one showing the states of a process or thread 
and the transitions between these states. 
 
1. (3 points) Label the diagram with the appropriate state names choosing from among 

these names:  priority, running, ready, signaled, swapped, blocked, executing, killed, 
runnable, empty.  

Answer: Top state: running or executing; Lower left state: blocked,  Lower right 
state: ready or runnable 
 
2. (6 points) Fill in the following table with descriptions of actions that cause the 

indicated transitions. In the column labeled process, name a system call that may 
cause transition 1 and describe the condition related to this system call that causes 
transition 2. In the column labeled signal, name signals which, when received by a 
process, cause transitions 1 and 2. For the column labeled thread, name thread-related 
operations that cause transitions 1 and 2. 

 
Transition process signal thread 

1 
read, or any other 
blocking system call 

Sigstop or other 
signal that causes 
process to block 

P, mutex.wait, or  
sem.wait 

2 

Description matching 
system call given in 
answer for transition 1 
 

Sigcont or other 
signal that causes 
resumption 

V, mutex.post, or 
sem.signal 

 
Answer: in table.  
 

  

1 
4 

3 

2 



CS 3214 Spring 2013  Midterm 

8/14 

 
3. (1 point) Give an example of a situation in which transition 3 occurs. 
 

Answer: end of scheduling interval, pause system call, or any equivalent 
 
 
4. (1 point) What system/kernel component controls which process makes transition 4. 
 

Answer: scheduler (or equivalent name) 
 
5. (2 points) Give two sequences of transitions that occur during a context switch. 

 
Answer: 1, 4 and 3,4 
 
 
 
 

(b) (12 points) Write the key elements of the C code needed or the following programs. Error 
checking is NOT required. 
 
1. (6 points) Write the code for a program that (1) creates a separate process to execute 

the program in the file “genfile”, (2) waits for 10 seconds, (3) sends a SIGUSR1 
signal to the separate process, and (4) obtains and prints the exit status of the separate 
process. Use the back of this page if needed. 

 
int child = fork(); 
if (child ==0)  
    exec(“genfile”,…); 
sleep(10); 
kill(child,SIGUSR1); 
int status; 
waitpid(child, &status, NULL); 
printf(“Child exit status &d \n\r”, status); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CS 3214 Spring 2013  Midterm 

9/14 

 
2. (6 points) Write the code for the program in “genfile” that (1) repeatedly executes the 

function “compute()”,  (2) upon receiving the SIGUSR1 signal executes the function 
int finalize(),  and terminates with an exit status equal to the return value from the 
finalize function.  

 
int done = 0; 
 
void handler(int signum) { 
done = 1; 
} 
 
main() { 
 
signal(SIGUSR1, handler); 
 
while(! done) compute();  int status = finalize(); 
exit(status); 
} 
 
 
Also may use sigaction variation. 
 
 
void handler(int signum, siginfo_t info, void* c) { 
 done = 1; 
} 
 
and 
 
struct sigaction sa; 
sa.sa_sigaction = handler; 
sigaction(SIGUSER1, &sa, NULL);  



CS 3214 Spring 2013  Midterm 

10/14 

 
(c) (5 points) Use the process information in the following table to answer the questions 

below. 
 

Process ID (pid) Parent Process ID (ppid) Group ID (gid) 
2218 2200 2218 
2220 2218 2220 
2222 2220 2220 
2251 2218 2251 
2252 2251 2251 
2253 2251 2220 

 
1. Identify the name and pid of the receiver of all signals, if any, that could be sent if a 

SIGSTP signal is sent to process 2251. Do not identify the initial SIGSTP signal 
itself. If no signals are sent answer “NONE”. 

 
Answer:  SIGCHLD sent to 2218 
 
2. Identify the name and pid of the receiver of all signals (including SIGSTP), if any, 

that could be sent if a SIGSTP signal is sent to process group 2220. If no signals are 
sent answer “NONE”. 

 
Answer:  SIGSTP sent to 2220, 2222, 2253 and SIGCHLD sent to 2218, 2220, 2251 
 
3. If the process group controlling the terminal is 2220 identify the name and pid of the 

receiver of all signals, if any, that could be sent if process 2222 reads from the 
terminal. If no signals are sent answer “NONE”. 

 
Answer:  NONE 
  
 
4. If the process group controlling the terminal is 2220 identify the name and pid of the 

receiver of all signals, if any, that could be sent if process 2252 reads from the 
terminal. If no signals are sent answer “NONE”. 

 
Answer:  SIGTTIN sent to 2252 and SIGCHLD sent to 2251 
 
5. Identify the name and pid of the receiver of all signals, if any, that could be sent if 

process 2253 terminates normally. If no signals are sent answer “NONE”. 
 

Answer:  SIGCHLD sent to 2251 
  



CS 3214 Spring 2013  Midterm 

11/14 

 
 

(d) (5 points) Put an “X” in the appropriate column to indicate if each of the following 
statements is True or False. 
 

Statement True False 

(a) The effect on processor design of Moore’s Law ended 
in approximately 2005 when processors were no longer 
doubling in speed every 18 months. 

 x 

(b) Multiple threads may both read and write the same 
global memory. x  

(c) Multiple threads may read but not write the same global 
memory.  x 

(d) A context switch from Process A to Process B implies 
that a mode switch also occurred. x  

(e) A mode switch implies that a context switch will also 
occur.  x 

(f) A signal blocked by a process will be marked as 
“pending” by the kernel and delivered to the process later. x  

(g) The kernel keeps a queue of pending signals to deliver 
to a process when the process unblocks the signal.  x 

(h) The fork system call creates a new process running the 
same program as the original process. x  

(i) The exec system call creates a new process running a 
program different from the original process.  x 

(j) The return value from a fork system call is always a 
process id.  x 

 
  



CS 3214 Spring 2013  Midterm 

12/14 

 
(e) (5 points) Shown in the left column is code that creates and manipulates file descriptors. 

For each read/write operation shown in the middle column indicate in the right column 
the data stream affected by the operation. If the read/write operation is erroneous, write 
ERROR.  Assume that all standard streams are open, that file descriptors are assigned in 
sequential order, and that no other file descriptors are used except those shown. 
 

code read/write 
operation 

affected stream 

 
int f1, f2, fd[2]; 
 
f1 =open(“file1”,O_RDWR); 
f2 =creat(“file2”,S_IRWXU); 
pipe(fd); 
 
dup2(3,0); 
dup2(5,3); 
close(5); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 read(0,…) 

 
file1 

 
 write(0,…) 

 
file1 

 
 write(1,…) 

 
STDOUT 

 
 write(2,…) 

 
STDERR 

 
 read(3,…) 

 
pipe 

 
 write(3,…) 

 
ERROR 

 
 write(4,…) 

 
file2 

 
 write(5,…) 

 
ERROR 

 
 read(6,…) 

 
ERROR 

 
 write(6,…) 

 
pipe 

 

 
 

 
 
 



CS 3214 Spring 2013  Midterm 

13/14 

IV. Threads and Synchronization (15 points) 
 

(a) (10 points) Shown below is the code, including synchronization using Dijkstra’s 
semaphores, for thread 1 in an application that has 3 threads. Also shown is the code with 
no synchronization for threads 2 and 3. Add the semaphore operations needed in threads 
2 and 3 to be correctly synchronized with thread 1. Assume that all variables are declared 
as global ints, all functions are correctly used, and the semaphores S and T are Boolean 
semaphores (i.e., the internal value is initialized to 1).  

 
 

Thread 1 Thread 2 
(5 points) 

Thread 3 
(5 points) 

 
P(S); 
y = 0; 
x = f(y); 
z = g(x); 
V(S); 
 
… 
 
P(T); 
a = 0; 
b = g(a) 
c = h(a) + b; 
V(T); 
 

 
P(S) 
y = 0; 
 
 
z = h(y); 
V(S) 
 
d = 6; 
 
 
e = f(d); 
 
 
j = g(e); 
 
 

 
 
n = 15; 
 
P(S) 
x = f(n); 
 
P(T) 
c = g(x); 
V(S) 
 
p = 7; 
 
 
r = g(p); 
 
 
b = g(p); 
V(T) 
 

 
Answer: Semaphore code shown in table above.  



CS 3214 Spring 2013  Midterm 

14/14 

 
 

(b)  (5 points) A concurrent programming language has the constructs 
 

block <blockname> {…} 
{before + after} <blockname> do {…}  

 
      that names a block of code and specifies whether a block should be executed by one 

thread before or after another block of code is executed by a different thread. Show the 
pattern of the code that a compiler could generate for blocks A and B to enforce the 
meaning of the before/after constraints in the following cases. 
 
(a) before B do { code for block A } 
   … 
   block B {code for block B} 
 
Answer:   semaphore S(0); //semaphore initialized to 0 
 
          code for block A; 
          V(S); 
 
          P(S); 
          code for block B; 
 
 
 
(b)  after B do { code for block A } 
   …. 
   block B { code for block B } 
 
 
Answer:   semaphore S(0); //semaphore initialized to 0 
 
          code for block B; 
          V(S); 
          V(S); 
 
          P(S); 
          code for block B; 
           
          P(S); 
          code for block C; 
 
        


	I. Stack Protocol (29 points)
	II. Optimization (16 points)
	III. Processes and Signals (40 points)
	IV. Threads and Synchronization (15 points)

