
CS 3214 Spring 2011 Midterm

1/12

CS 3214 Midterm

Problem Points Min Max Average Median SD Grader

1 Memory Layout and Locality 25 2 25 14.2 14 5.7 Bill

2 Stack 25 3 22 12.6 13 4.2 Peter

3 Compilation and Linking 25 0 19 7.6 6 4.7 Maggie

4 Execution and Optimization 25 0 25 9.3 8 6.2 Ali

Total 100 14 76 43.6 43 14.0

CS 3214 Spring 2011 Midterm

2/12

1. Memory Layout and Locality (25 pts)
Consider the following C implementation of a function to sum the columns of a
two-dimensional matrix; a precondition of the function is that the array Sum[] has
been initialized to hold zeros.

void sumCols(int M, int N, int Sum[M], int A[N][M]) {

 for (int j = 0; j < M; j++) {
 for (int i = 0; i < N; i++) {
 Sum[i] = Sum[i] + A[i][j];
 }
 }
}

a) Does this algorithm exhibit temporal locality? Briefly say why or why not!

i. (2 pts) with respect to code?

Yes. The recomputation of Sum[i] is executed N times in succession
during each pass through the inner loop.

Note: the question is about locality wrt code accesses, not data
accesses. Answers that referred to variables, like i or Sum[i] are talking
about data accesses. The question relates to the way in which the
machine language translation of this code would be managed at run-
time (although you did not need to take the effects of the translation into
account).

ii. (4 pts) with respect to data?

Very little. No elements of Sum[] or A[][] are accessed more than once
during a pass through the inner loop; there is some slight locality in that
the loop counters i and j are accessed repeatedly.

b) Does this algorithm exhibit spatial locality? Briefly say why or why not!
i. (2 pts) with respect to code?

Yes. The executed code would be stored in a relatively small,
contiguous section of instruction memory, and the instructions would
be executed repeatedly (due to the loop).

ii. (4 pts) with respect to data?

CS 3214 Spring 2011 Midterm

3/12

Yes. The inner loop traverses Sum[] with stride 1, indicating good
spatial locality wrt Sum[]. Since A[][] is stored in row-major order, and
the inner loop drives the row counter i, not the column counter j,
successive accesses to A[][] are with stride N, which indicates poor
spatial locality wrt A[][].

c) (7 pts) Assume a memory hierarchy with just one level of caching, and a
cache line size of 48 bytes (12 ints). Assume that the dimensions of the
arrays are large in relation to the size of the cache. How many cache misses
would you expect to occur per iteration of the inner loop?

Note: A cache line is one storage unit of the cache, not the entire
cache, which would consist of many lines. When data is fetched into
the cache, a whole line is populated (from RAM) at once.

S[] is traversed with stride 1, so a line of cache would store 12
successive, relevant elements of S[]; we should expect a pattern of 1
miss followed by 11 hits for S[].

Since accesses in A[][] are via stride N, and we are assuming the array
dimensions are large in relation to the cache size, we would expect that
each fetch into a cache line would usually fetch only one value from the
current row of A[][]. Therefore, almost all accesses to A[][] would result
in a cache miss.

So, on a single pass, we'd expect 1 + 1/12 = 13/12 or about 1.0833 cache
misses per pass.

Now consider the following alternative implementation:

void sumCols(int M, int N, int Sum[M], int A[N][M]) {

 for (int i = 0; i < N; i++) {
 for (int j = 0; j < M; j++) {
 Sum[i] = Sum[i] + A[i][j];
 }
 }
}

d) (3 pts) Does the alternative implementation exhibit temporal locality with
respect to data? Briefly say why or why not!

Yes. Now the same element of Sum[] is accessed on every pass
through the inner loop; as before, there is some slight locality in that the
loop counters i and j are accessed repeatedly.

However, it's still true that no element of A[][] is used more than once.

CS 3214 Spring 2011 Midterm

4/12

e) (3 pts) Does the alternative implementation exhibit spatial locality with respect
to data? Briefly say why or why not!

Yes. The accesses to Sum[] (driven by the outer loop) are still stride 1,
indicating good spatial locality for Sum[]. However, now the accesses
to A[][] are also via stride 1 since the inner loop walks across row i of A.
So we would now see good spatial locality with respect to A as well.

CS 3214 Spring 2011 Midterm

5/12

2. Stack (25 pts)
Consider the following low-quality C implementation of the getline function:

 1: char *getline() {
 2: char buf[8];
 3: char *result;
 4: gets(buf);
 5: result = malloc(strlen(buf));
 6: strcpy(result, buf);
 7: return result;
 8: }

We obtain the following disassembly of getline, up to the call to gets in line 4:

 1: 080485c0 <getline>:
 2: 80485c0: 55 push %ebp
 3: 80485c1: 89 e5 mov %esp, %ebp
 4: 80485c3: 83 ec 28 sub $0x28, %esp
 5: 80485c6: 89 5d f4 mov %ebx, -0xc(%ebp)
 6: 80485c9: 89 75 f8 mov %esi, -0x8(%ebp)
 7: 80485cc: 89 7d fc mov %edi, -0x4(%ebp)
 Part a) refers to this point in the code
 8: 80485cf: 8d 75 ec lea -0x14(%ebp), %esi
 9: 80485d2: 89 34 24 mov %esi, (%esp)
10: 80485d5: e8 a3 ff ff ff call 804857d <gets>
 Part b) refers to this point in the code

Suppose that getline is called with the return address equal to 0x8048643,
register %ebp equal to 0x2, and register %esi equal to 0x3.

Note: this question was intended to be practice problem 3.43 from the text,
but part of the preceding paragraph was inadvertently omitted.

You type in the following string: 012345678901234567890123

FYI: digits are assigned consecutive ASCII codes, and '0' is represented by 0x30.

The program terminates with a segmentation fault, and when you run GDB you
determine that the error occurs during the execution of the ret instruction in
getline.

CS 3214 Spring 2011 Midterm

6/12

a) (9 pts) Fill in the diagram below, showing as much detail as you can
determine about the state of the stack immediately after the execution of line
7 in the disassembly. Label the quantities stored on the stack (e.g., "Return
address") on the right, and show the hexadecimal values (if known) within the
table. Each cell of the table represents 4 bytes. Indicate the position of
%ebp.

08 04 86 43
Return address written to the stack before getline()
is called

00 00 00 02 Saved %ebp – pushed by instruction 3

?? ?? ?? ?? Saved %edi – pushed by instruction 7; note the
offsets that are used relative to %ebp

00 00 00 03 Saved %esi – pushed by instruction 6

?? ?? ?? ?? Saved %ebx – pushed by instruction 5

 buf[4-7] – note the stack pointer is moved 0x28
(40) bytes by instruction 4; 16 bytes are used above

 buf[0-3] – that leaves a residue of 24 bytes, which
provides space for buf[] (and more)

CS 3214 Spring 2011 Midterm

7/12

b) (6 pts) Redraw your diagram to show the effect (on the stack) of the call to
gets in line 10 of the disassembly.

08 04 86 00 Return address

33 32 31 30 Saved %ebp

39 38 37 36 Saved %edi

35 34 33 32 Saved %esi

31 30 39 38 Saved %ebx

37 36 35 34 buf[7-4]

33 32 31 30 buf[3-0]

The call to gets() will 24 bytes of data (corresponding to the ASCII codes
for the given string) into memory, starting at the address passed to gets(),
which points to buf[0], and follow that with a zero byte to terminate the
string.

So, the first 8 bytes will fill buff[], and the next 16 will overwrite the next 16
bytes (destroying the register backups). The zero byte will then overwrite
the last stored byte of the return address.

c) (2 pts) To what address does the program attempt to return?

08 04 86 00 : low-order byte was overwritten by the string terminator

d) (4 pts) What register(s) have corrupted value(s) when getline returns?

The saved values of the following registers were altered:

 %ebp
 %edi
 %esi
 %ebx

e) (4 pts) Aside from the potential for buffer overflow, what other things are

wrong with the given C code for getline?

CS 3214 Spring 2011 Midterm

8/12

The parameter in the call to malloc is incorrect because it does not allow
for the necessary terminating byte; it should be strlen(buf) + 1.

The implementation also fails to check whether the return value from the
call to malloc is NULL.

One could argue the call to strcpy() should be replaced with a call to
strncpy(), but if gets() is correct, and if the problem in the call to malloc() is
corrected, then the call to strcpy() is safe.

CS 3214 Spring 2011 Midterm

9/12

3. Compilation & Linking (25 pts)
Consider the following programs:

prog_a.c:

#include <head_a.h>
#include <head_b.h>

int main ()
{
 my_func_c();
 my_func_b();
}

prog_b.c:

#include <head_a.h>

void my_func_b()
{
 lib_func_a();
 my_func_c();
}

prog_c.c:

#include <head_a.h>
#include <head_b.h>
#include <head_c.h>

void my_func_c()
{
 lib_func_c();
 lib_func_d();
}

Assume all undefined functions are defined in a standard library lib_alpha.so

a) (2 pts) Write the GCC command to compile the programs into a binary named

my_prog using dynamic linking.

gcc prog_a.c prog_b.c prog_c.c lib_alpha.so -o my_prog

b) (6 pts) Draw a flow graph showing how the different files are processed and
converted into the binary. Clearly mark the dependencies between the files,
and name the tools that are used at each stage. Also show how
lib_alpha.so is accessed during loading.

 C

preprocessor

 C compiler

head_a.h head_b.h head_c.h

prog_a.c prog_b.c prog_c.c

prog_a.o prog_b.o prog_c.o

my_prog

CS 3214 Spring 2011 Midterm

10/12

c) A user wants to run my_prog but wants to use her own version of

lib_func_d() and not the one defined in the library lib_alpha.so.
Outline and give commands she will use to achieve this if:

i. (3 pts) the above source files (not the library source) are available;

Change either the source file to use new custom function, e.g.,
my_lib_func_d(), or redefine the function in the c code.

ii. (3 pts) the source files are not available.

Use LD_PRELOAD to override the function defined in the standard library

d) (3 + 3 pts) Now assume that my_prog is created using static linking, repeat
(c).

(i) Same as before
(ii) It is not possible to do this as LD_PRELOAD only works for

dynamically linked libraries.

e) In *NIX environments, when a user bob executes a binary, say gimp, gimp
executes with the privileges of bob, even though gimp is owned by the user
root. A special case occurs when the setuid attribute of the binary is
enabled. In this case, the binary will run with the privileges of the user who
owns the binary and not as bob who runs the program. For instance, ping is
owned by root with setuid enabled. Thus, when bob executes ping, it
runs with root privileges.

i. (3 pts) Based on your answers to part (c) and (d), discuss one problem

that can arise in dynamically linked programs that have setuid enabled.

A user can use LD_PRELOAD and inject malicious code into a binary,
which will then run with root privileges.

ii. (2 pts) Suggest an efficient solution for addressing this problem.

Do not allow LD_PRELOAD for setuid programs.

CS 3214 Spring 2011 Midterm

11/12

4. IA32 Execution and Optimizations (25 pts)
Consider the following function compiled using gcc:
calculate:
 1: push %ebp
 2: mov %esp,%ebp
 3: sub $0x10,%esp
 4: movl $0x0,-0x10(%ebp)
 5: movl $0x1,-0xc(%ebp)
 6: movl $0x0,-0x4(%ebp)
 7: jmp <line 22>
 8: mov -0xc(%ebp),%eax
 9: add -0x10(%ebp),%eax
10: mov %eax,-0x8(%ebp)
11: mov -0xc(%ebp),%eax
12: mov %eax,-0x10(%ebp)
13: mov -0x8(%ebp),%eax
14: mov %eax,-0xc(%ebp)
15: mov -0x4(%ebp),%eax
16: shl $0x2,%eax
17: mov %eax,%edx
18: add 0xc(%ebp),%edx
19: mov -0x8(%ebp),%eax
20: mov %eax,(%edx)
21: addl $0x1,-0x4(%ebp)
22: mov -0x4(%ebp),%eax
23: cmp 0x8(%ebp),%eax
24: jl <line 8>
25: leave
26: ret

calculate_hand_opt:

 Uses registers instead of
accessing memory again and
again.

 Uses leal to calculate array
address

a) (10 pts) Write a C version of the function calculate.

void calculate (int n, int *result)
{
 int a,b,c,i;
 a=0;
 b=1;

 for(i=0;i<n;i++) {
 c=a+b;
 a=b;
 b=c;
 result[i]=c;
 }
}

CS 3214 Spring 2011 Midterm

12/12

b) (2 pts) Explain what line 3 of the assembly code does and why.

Reserves space for temporary/local variables on the stack.

c) (2 pts) Based on your examination of the code, what can you say about the

gcc optimization level used for compiling calcuate as shown in the
provided code?

No optimization. Reason: code contains repetitive access to memory, thus
code is emitted for each instruction.

d) (2 pts) What is the main performance bottleneck in the provided code for

calculate?

Excessive memory accesses.

e) (9 pts) In the space provided above under calculate_hand_opt, sketch
what you think would be a more optimized assembly code version of
calculate. If you do not recall the exact format of specific IA32 instructions,
you can use pseudo code, i.e., use plain English to express what you want an
instruction to do.

 Shown in the space above.

