
CS 3214 Sample Midterm (Fall 2009)

1/11

Sample Midterm (Fall 2009)

Solutions are shown in this style. This exam was given in Fall 2009.

1. Executing Programs on IA32 (20 pts)
The following questions relate to how programs are compiled for IA32.

a) (8 pts) In lecture, we had discussed how each function obtains its own
activation record, or stack frame, every time it is called. The stack frame is
used for several purposes, including to hold the values of arguments
passed to a function or to hold the values of local variables that cannot be
kept in registers. Typically, accesses to these arguments and variables
involve loads or stores that use relative addressing using the %ebp
register as a base.
Recent versions of gcc support an optimization option ‘-fomit-frame-
pointer’ that organizes accesses to local variables differently. Instead of
using the base/frame pointer register %ebp, the stack pointer register
%esp is used to access local variables and arguments passed to a
function. As a result, %ebp is available for other uses.

i. (6 pts) Explain why and how this would work!
Why is the base pointer, apparently, redundant?

The base pointer is always at known offset from the stack pointer, so any
accesses that use addressing relative to $ebp can be replaced with accesses
that use addressing relative to $esp.

ii. (2 pts) Consider the example of accessing the first argument, which is
traditionally accessed using 8(%ebp).
 How would code compiled with –fomit-frame-pointer access this
argument?

Let SFSIZE = |$ebp-$esp| be the current stack frame size, then any access to
disp($ebp) can be replaced with disp+SFSIZE($esp). For example, 8($ebp)
would become 8+SFSIZE($esp). For example:

int sum(int x, int y)
{
 char localarray[16];
 return x + y;
}

When compiled with –fomit-frame-pointer (but without other optimizations), the
code shows:

CS 3214 Sample Midterm (Fall 2009)

2/11

sum:
 subl $16, %esp
 movl 24(%esp), %eax
 addl 20(%esp), %eax
 addl $16, %esp
 ret

b) (12 pts) Consider the following assembly code, which was produced by

gcc for a function ‘g()’. The left column shows the result when compiling at
the first level of optimization (-O1), the right column shows the result of
compiling at the second optimization level.
IA 32 Code,compiled with –O1 IA 32 Code, compiled with –O2
g:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
 cmpl %edx, %eax
 je .L2
 cmpl $1, %eax
 je .L6
 cmpl $1, %edx
 jne .L4
.L6:
 movl $1, %eax
 jmp .L2
.L4:
 cmpl %edx, %eax
 jge .L7
 movl %eax, 4(%esp)
 subl %eax, %edx
 movl %edx, (%esp)
 call g
 jmp .L2
.L7:
 movl %edx, 4(%esp)
 subl %edx, %eax
 movl %eax, (%esp)
 call g
.L2:
 leave
 ret

g:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %ecx
 cmpl %ecx, %edx
 je .L3
.L15:
 cmpl $1, %edx
 je .L5
 cmpl $1, %ecx
 je .L5
 cmpl %ecx, %edx
 jge .L9
 movl %ecx, %eax
 movl %edx, %ecx
 subl %edx, %eax
 movl %eax, %edx
.L7:
 cmpl %edx, %ecx
 jne .L15
.L3:
 popl %ebp
 movl %ecx, %eax
 ret
.L5:
 popl %ebp
 movl $1, %eax
 ret
.L9:
 subl %ecx, %edx
 jmp .L7

i. (9 pts) Provide a C version of function g()!
Hint: ‘g’ implements a well-known, classic mathematical algorithm!

‘g’ implements Euclid’s algorithm for finding the greatest common divisor:

int g(int m, int n)
{

CS 3214 Sample Midterm (Fall 2009)

3/11

 if (m == n)
 return m;
 if (m == 1 || n == 1)
 return 1;
 return (m < n) ? g(n - m, m) : g(m - n, n);
}

ii. (3 pts) Which optimization did the compiler apply in the –O2 column

that is not applied in the –O1 column?

The compiler applied recursion removal – the recursive calls were transformed
into a loop.

2. Linking (22 pts)
The following questions center on linking and memory layout.

a) (12 pts) Assume you have three files a.c, b.c, and main.c with the
following structure:

shared.h

int global_shared_variable = -1;

a.c b.c main.c

#include “shared.h” #include “shared.h” int main() { }

 When you attempt to compile and link these files, you obtain:

$ gcc -c a.c b.c main.c
$ gcc a.o b.o main.o
b.o:(.data+0x0): multiple definition of `global_shared_variable'
a.o:(.data+0x0): first defined here
collect2: ld returned 1 exit status

1. (2 pts) Why does the error message say that a.o defines

‘global_shared_variable’ when in fact ‘global_shared_variable’ is
defined in shared.h?

shared.h is not a compilation unit – the C preprocessor folds it into both a.c and
b.c, respectively. The linker processes a.o, b.o, and main.o only.

2. You attempt to change shared.h to remove the initialization, i.e.:

int global_shared_variable;

CS 3214 Sample Midterm (Fall 2009)

4/11

You repeat the compilation and, in fact, the error goes away:

$ gcc -c a.c b.c main.c
$ gcc a.o b.o main.o
$

(2 pts) Why did the linker not report an error this time?

As an uninitialized global variable, global_shared_variable becomes a weak
symbol, hence the linker will not report an error for multiple definitions.

3. Your teammate proposes to fix the error in a different way, by making
the variable static, i.e., by changing shared.h to read:

static int global_shared_variable = -1;

You repeat the compilation and, in fact, the error is gone:

$ gcc -c a.c b.c main.c
$ gcc a.o b.o main.o
$

(2 pts) Why did the linker not report an error this time?

global_shared_variable has become 2 distinct local symbols in a.o and b.o that
happen to have the same name, hence there is no conflict for the linker to report.

(2 pts) Explain why this solution is not a good one!

It would create 2 copies of this variable with distinct memory locations holding
potentially different values, updates to one would not affect the other. This is
likely not what the programmer intended when placing the definition into
shared.h.

4. (4 pts) Complete the following table to show the correct way to address

the issue in a way that avoids linker errors and allows the variable to
be initialized!

shared.h

extern int global_shared_variable;

a.c b.c main.c

#include “shared.h”

int global_shared_variable = -1;

#include “shared.h”

int
main()
{ }

CS 3214 Sample Midterm (Fall 2009)

5/11

Alternatively, the definition could be contained in b.c or main.c
It’s also possible to omit the ‘extern’, in which case the linker rule applies that a
single strong definition in a.o overrides the weak definition in b.o. However, this is
not good practice (-Wl,--warn-common would flag it). Some suggested placing
‘extern int global_shared_variable’ in b.c – this would compile and link, but is
generally not considered sound programming practice.

b) (4 pts) A “fence” is a technique that is sometimes used to detect out-of-
bounds memory accesses. The idea is to place some ‘fence’ values that
rarely occur during normal execution before and after each array. Then,
out-of-bounds accesses can be detected by checking whether the fence
values were changed.
Complete the program below to implement this idea to protect array ‘a’
which is passed to a buggy update routine that contains out-of-bounds
accesses.

void
buggy_update_array(int *array, int n, int delta)
{
 int i;
 for (i = 0; i <= n; i++) {
 array[i-1] = array[i] + delta;
 }
}

int a[10];

int main()
{
 buggy_update_array(a, 10, 1);
}

Knowing that the linker will allocate variables of the same storage class
consecutively in memory, the program can be completed as follows:

void
buggy_update_array(int *array, int n, int delta)
{
 int i;
 for (i = 0; i <= n; i++) {
 array[i-1] = array[i] + delta;
 }
}

int leftfence;
int a[10];
int rightfence;

int main()
{
#define MAGIC 0xdeadbeef;
 leftfence = rightfence = MAGIC;

CS 3214 Sample Midterm (Fall 2009)

6/11

 buggy_update_array(a, 10, 1);
 assert (leftfence == MAGIC && rightfence == MAGIC);
}

c) (6 pts) During his recent distinguished lecture at Virginia Tech, Dr. Eugene

Spafford pointed out that the vast majority of current security exploits
involve dynamically linked libraries. He proposed to eliminate shared
libraries. Discuss the merits of this idea! Provide at least 2 distinct
arguments for or against it; keep your points brief!

Arguments in favor of Spafford’s idea:

• Eliminating shared libraries would remove the potential for attacks in
which a program’s accesses to OS functionality are intercepted and
redirected when resolving a program’s dynamic references. For instance,
on Linux, the linker will check /etc/ld.so.preload for a list of libraries to be
loaded first when linking a dynamically linked executable. Plus, an
attacker could simply replace system libraries with their own version,
affecting all applications.

The counterarguments are the advantages of dynamic linking/shared libraries
discussed in lecture, including

• Shared libraries allow independent updates of the library code without
requiring that all binaries referring to it be re-linked

• Shared libraries save physical memory since library code used by multiple
processes can be shared

• Dynamic linking enables runtime extensibility, e.g., plug-ins.

3. Locality (20 pts)
Consider the following naïve implementation of matrix transpose for large, dense
matrices:

void inplace_transpose(int matrix[N][N])
{
 int i, j;
 for (i = 0; i < N - 1; i++) {
 for (j = i + 1; j < N; j++) {
 int tmp = matrix[i][j];
 matrix[i][j] = matrix[j][i];
 matrix[j][i] = tmp;
 }
 }
}

a) (5 pts) Does this algorithm exhibit temporal locality?

Briefly say why or why not!

CS 3214 Sample Midterm (Fall 2009)

7/11

i. (2 pts) With respect to code

Yes, it uses loops whose instructions are executed many times.

ii. (3 pts) With respect to data

No, each matrix element is accessed once and only once. (Though less relevant,
I also accepted ‘yes’ if you pointed out that there is reuse of ‘i' and ‘j’ – but not
‘tmp’)

b) (5 pts) Does this algorithm exhibit spatial locality?
Briefly say why or why not!

i. (2 pts) With respect to code

Yes – the executed code is contained in a contiguous section of instructions.
(The fact that each backward branch in the loop causes a non-contiguous control
transfer notwithstanding.)

ii. (3 pts) With respect to data

If the matrix is stored in row-major order, as in C, the accesses to matrix[i][j]
exhibit spatial locality, but the accesses to matrix[j][i] do not.

c) (5 pts) Assume a memory hierarchy with just one level of caching and a
cache line size of 64 bytes, which can hold 16 ints. How many cache
misses would you expect per inner loop iteration?

Each loop iteration accesses both matrix[i][j] and matrix[j][i]. If the matrix is large
enough (so that the distance between &matrix[k][x] and &matrix[k+1][x] is large),
matrix[j][i] would miss every time, and matrix[i][j] every 16th time – once per cache
line - thus we would expect 1+1/16=1.0625 cache misses per iteration.

d) (5 pts) In lecture we had discussed blocking as a method to speed up

dense matrix multiplication. Could blocking be applied to speed up in-
place matrix transposition? Briefly justify your answer!

Yes. Divide the matrix into small squares that fit in the cache, transpose the
elements in each square block using a temporary buffer. If the temporary buffer,
the source block, and the destination block fit into the cache, there will be no
penalty for the lack of spatial locality because the cache block fetched when
accessing the b[k][*] will still be in the cache when b[k+1][*] is accessed. This
description is simplified: in practice, one needs to worry about conflict misses as
well. This blocking avoids the cache misses due to lack of spatial locality when
accessing neighboring columns; it does not introduce temporal locality.

CS 3214 Sample Midterm (Fall 2009)

8/11

4. Optimizations (18 pts)
a) (4 pts) Consider the following C code

void matrix_vector_multiply(int * y, int M[2][2], int * x)
{
 y[0] = M[0][0] * x[0] + M[0][1] * x[1];
 y[1] = M[1][0] * x[0] + M[1][1] * x[1];
}

Suppose you have an infinitely sophisticated compiler and you are using a
machine with plenty of registers such as x86_64. How many memory load
instructions and how many memory store instructions would the body of
this function contain? (Not counting any accesses needed for stack frame
management or saving callee-saved registers.)

Because x and y could refer to the same vector, we need 8 loads and 2 stores.
Loads are for M[0][0], M[0][1], x[0], x[1], M[1][0], M[1][1], x[0], and x[1], stores for
y[0] and y[1]. For example, here is the x86_64 code:

matrix_vector_multiply:
 movl 4(%rdx), %ecx # load x[1]
 movl (%rdx), %eax # load x[0]
 imull 4(%rsi), %ecx # load M[0][1]
 imull (%rsi), %eax # load M[0][0]
 addl %eax, %ecx
 movl %ecx, (%rdi) # store y[0]
 movl 4(%rdx), %ecx # load x[1]
 movl (%rdx), %eax # load x[0]
 imull 12(%rsi), %ecx # load M[1][1]
 imull 8(%rsi), %eax # load M[1][0]
 addl %eax, %ecx
 movl %ecx, 4(%rdi) # store y[1]
 ret

b) (4 pts) Now consider this C function, which is almost identical to the one
above, except that the matrix M is no longer a nested array:

void matrix_vector_multiply2(int * y, int *M[], int * x)
{
 y[0] = M[0][0] * x[0] + M[0][1] * x[1];
 y[1] = M[1][0] * x[0] + M[1][1] * x[1];
}

How many memory load and store instructions would a compiler emit for
this function?

CS 3214 Sample Midterm (Fall 2009)

9/11

Here, the address of the first element of an array of pointers is passed to the
function, which must be dereferenced to obtain M[0] and M[1]. This adds two
loads, hence 10 loads and 2 stores.

matrix_vector_multiply2:
 movq (%rsi), %r8 # load M[0]
 movl 4(%rdx), %ecx # load x[1]
 movl (%rdx), %eax # load x[0]
 imull 4(%r8), %ecx # load M[0][0]
 imull (%r8), %eax # load M[0][1]
 addl %eax, %ecx
 movq 8(%rsi), %rax # load M[1]
 movl %ecx, (%rdi) # store y[0]
 movl 4(%rax), %ecx # load M[1][1]
 movl (%rax), %eax # load M[1][0]
 imull 4(%rdx), %ecx # load x[1]
 imull (%rdx), %eax # load x[0]
 addl %eax, %ecx
 movl %ecx, 4(%rdi) # store y[1]
 ret

c) (4 pts) The ISO-C99 standard added a keyword ‘restrict’ to the language

which can be applied to pointer variables. ‘restrict’ says that a given
pointer is the only means of accessing the data to which it points within
the scope in which it is declared; no other pointer will refer to the same
data. If these assumptions are violated, undefined behavior will result.
Below, the ‘restrict’ keyword is applied to x and y.

void matrix_vector_multiply_r(int * restrict y, int M[2][2],
 int * restrict x)
{
 y[0] = M[0][0] * x[0] + M[0][1] * x[1];
 y[1] = M[1][0] * x[0] + M[1][1] * x[1];
}

How many memory load and store instructions would a sophisticated
compiler emit for this function? Note that M is again a nested array as in
part a)!

If x is assumed to not refer to the same location as y – which is what ‘restrict’
implies – then we only need 6 loads and 2 stores since x[1] and x[0] do not be
read from memory again after y[0] is written.

matrix_vector_multiply_r:
 movl 4(%rdx), %r8d # load x[1]
 movl (%rdx), %ecx # load x[0]
 movl %r8d, %eax
 movl %ecx, %edx

CS 3214 Sample Midterm (Fall 2009)

10/11

 imull 4(%rsi), %eax # load M[0][1]
 imull (%rsi), %edx # load M[0][0]
 addl %edx, %eax
 movl %eax, (%rdi) # store y[0]
 imull 12(%rsi), %r8d # load M[1][1]
 imull 8(%rsi), %ecx # load M[1][0]
 addl %ecx, %r8d
 movl %r8d, 4(%rdi) # store y[1]
 ret

d) (6 pts) Assuming an optimizing compiler, is there always a performance
cost for declaring many local variables within one function? If yes, say
why. If not, explain precisely when there is a cost and when there isn’t!

No, not always. Optimizing compilers perform register allocation. The number of
declared local variables does not matter unless the lifetime of these local
variables overlaps. Each register can hold only one local variable at a time, if
there are more local variables alive at any point in a function than there are
registers, spilling occurs and a performance penalty is paid.

5. Unix Process Management (20pts)
a) (14 pts) Consider the following example programs. List all legal outputs

this program may produce when executed on a Unix system. The output
consists of strings made up of multiple letters.

// included in both programs
#include <unistd.h>
#include <sys/wait.h>
// W(A) means write(1, “A”, sizeof “A”)
#define W(x) write(1, #x, sizeof #x)

Possible Outputs:

int main()
{
 W(A);
 fork();
 W(B);
 fork();
 W(C);
}

i) 6 pts

Possible outputs are:
ABBCCCC
ABCBCCC
ABCCBCC

int main()
{
 W(A);
 int child = fork();
 W(B);
 if (child)
 wait(NULL);

ii) 8 pts

Possible outputs are:
ABCBC
ABBCC

CS 3214 Sample Midterm (Fall 2009)

11/11

 W(C);
}

There is a bug in the program: it should be write(1, #x, sizeof #x – 1). The
program as is outputs a ‘\0’ character, which however does not appear on the
terminal.

b) (6 pts) Consider the following two programs. Below each program is

shown the output sent to the terminal when the program is run:

int main() {
 if (fork())
 *(int *)0 = 42;
}

int main() {
 if (!fork())
 *(int *)0 = 42;
}

Output:
$./crash
Segmentation fault
$

Output:
$./crash
$

Why is the message “Segmentation fault” displayed for the program on the
left, but not for the program on the right?

The segmentation fault message is displayed by the shell if a child process is
terminated with signal 11, SIGSEGV. On the left, where fork() returns not zero,
the shell’s child is terminated. On the right, the process that is terminated is the
child process, which is a grandchild of the shell. ‘wait()’ does not allow the shell
to wait for grandchildren, hence the shell cannot learn that the process
terminated with a fault, hence no message.
Note that this behavior occurs independent of whether the scheduler runs the
parent or the child first after the fork (on a single processor system).

