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Sample Midterm (Fall 2009) 
 
Solutions are shown in this style. This exam was given in Fall 2009. 

1. Executing Programs on IA32 (20 pts) 
The following questions relate to how programs are compiled for IA32. 
 

a) (8 pts) In lecture, we had discussed how each function obtains its own 
activation record, or stack frame, every time it is called. The stack frame is 
used for several purposes, including to hold the values of arguments 
passed to a function or to hold the values of local variables that cannot be 
kept in registers. Typically, accesses to these arguments and variables 
involve loads or stores that use relative addressing using the %ebp 
register as a base.  
Recent versions of gcc support an optimization option ‘-fomit-frame-
pointer’ that organizes accesses to local variables differently. Instead of 
using the base/frame pointer register %ebp, the stack pointer register 
%esp is used to access local variables and arguments passed to a 
function. As a result, %ebp is available for other uses. 
 

i. (6 pts) Explain why and how this would work!  
Why is the base pointer, apparently, redundant?  

 
The base pointer is always at known offset from the stack pointer, so any 
accesses that use addressing relative to $ebp can be replaced with accesses 
that use addressing relative to $esp.  
 

ii.  (2 pts) Consider the example of accessing the first argument, which is 
traditionally accessed using 8(%ebp). 
 How would code compiled with –fomit-frame-pointer access this 
argument? 
 

Let SFSIZE = |$ebp-$esp| be the current stack frame size, then any access to 
disp($ebp) can  be replaced with disp+SFSIZE($esp). For example, 8($ebp) 
would become 8+SFSIZE($esp). For example: 
 

int sum(int x, int y) 
{ 
    char localarray[16]; 
    return x + y; 
} 
 

When compiled with –fomit-frame-pointer (but without other optimizations), the 
code shows: 
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sum: 
    subl    $16, %esp 
    movl    24(%esp), %eax 
    addl    20(%esp), %eax 
    addl    $16, %esp 
    ret 
 

 
b) (12 pts) Consider the following assembly code, which was produced by 

gcc for a function ‘g()’. The left column shows the result when compiling at 
the first level of optimization (-O1), the right column shows the result of 
compiling at the second optimization level. 
IA 32 Code,compiled with –O1 IA 32 Code, compiled with –O2 
g: 
    pushl   %ebp 
    movl    %esp, %ebp 
    subl    $8, %esp 
    movl    8(%ebp), %eax 
    movl    12(%ebp), %edx 
    cmpl    %edx, %eax 
    je  .L2  
    cmpl    $1, %eax 
    je  .L6  
    cmpl    $1, %edx 
    jne .L4  
.L6: 
    movl    $1, %eax 
    jmp .L2  
.L4: 
    cmpl    %edx, %eax 
    jge .L7  
    movl    %eax, 4(%esp) 
    subl    %eax, %edx 
    movl    %edx, (%esp) 
    call    g 
    jmp .L2  
.L7: 
    movl    %edx, 4(%esp) 
    subl    %edx, %eax 
    movl    %eax, (%esp) 
    call    g 
.L2: 
    leave    
    ret 

g:   
    pushl   %ebp 
    movl    %esp, %ebp 
    movl    8(%ebp), %edx 
    movl    12(%ebp), %ecx 
    cmpl    %ecx, %edx 
    je  .L3 
.L15: 
    cmpl    $1, %edx 
    je  .L5 
    cmpl    $1, %ecx  
    je  .L5  
    cmpl    %ecx, %edx 
    jge .L9  
    movl    %ecx, %eax 
    movl    %edx, %ecx 
    subl    %edx, %eax 
    movl    %eax, %edx 
.L7: 
    cmpl    %edx, %ecx 
    jne .L15 
.L3: 
    popl    %ebp 
    movl    %ecx, %eax 
    ret 
.L5: 
    popl    %ebp 
    movl    $1, %eax 
    ret 
.L9: 
    subl    %ecx, %edx 
    jmp .L7 

i. (9 pts) Provide a C version of function g()!  
Hint: ‘g’ implements a well-known, classic mathematical algorithm! 

 
‘g’ implements Euclid’s algorithm for finding the greatest common divisor: 
 

int g(int m, int n) 
{ 
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    if (m == n) 
        return m; 
    if (m == 1 || n == 1) 
        return 1; 
    return (m < n) ? g(n - m, m) : g(m - n, n); 
} 

 
ii. (3 pts) Which optimization did the compiler apply in the –O2 column 

that is not applied in the –O1 column? 
 

The compiler applied recursion removal – the recursive calls were transformed 
into a loop. 

2. Linking (22 pts) 
The following questions center on linking and memory layout. 
 

a) (12 pts) Assume you have three files a.c, b.c, and main.c with the 
following structure: 

 

shared.h 

int global_shared_variable = -1; 

a.c b.c main.c 

#include “shared.h” #include “shared.h” int main() { } 

 
 When you attempt to compile and link these files, you obtain: 
 

$ gcc -c a.c b.c main.c 
$ gcc a.o b.o main.o 
b.o:(.data+0x0): multiple definition of `global_shared_variable' 
a.o:(.data+0x0): first defined here 
collect2: ld returned 1 exit status 

 
1. (2 pts) Why does the error message say that a.o defines 

‘global_shared_variable’ when in fact ‘global_shared_variable’ is 
defined in shared.h? 

 
shared.h is not a compilation unit – the C preprocessor folds it into both a.c and 
b.c, respectively. The linker processes a.o, b.o, and main.o only. 

 
2. You attempt to change shared.h to remove the initialization, i.e.: 

 
int global_shared_variable; 
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You repeat the compilation and, in fact, the error goes away: 
 

$ gcc -c a.c b.c main.c 
$ gcc a.o b.o main.o 
$ 
 

(2 pts) Why did the linker not report an error this time? 
 

As an uninitialized global variable, global_shared_variable becomes a weak 
symbol, hence the linker will not report an error for multiple definitions. 
 

3. Your teammate proposes to fix the error in a different way, by making 
the variable static, i.e., by changing shared.h to read: 
 
static int global_shared_variable = -1; 
 
You repeat the compilation and, in fact, the error is gone: 
 

$ gcc -c a.c b.c main.c 
$ gcc a.o b.o main.o 
$ 
 

(2 pts) Why did the linker not report an error this time?   
 

global_shared_variable has become 2 distinct local symbols in a.o and b.o that 
happen to have the same name, hence there is no conflict for the linker to report. 

 
(2 pts) Explain why this solution is not a good one! 

 
It would create 2 copies of this variable with distinct memory locations holding 
potentially different values, updates to one would not affect the other. This is 
likely not what the programmer intended when placing the definition into 
shared.h. 

 
4. (4 pts) Complete the following table to show the correct way to address 

the issue in a way that avoids linker errors and allows the variable to 
be initialized! 
 

shared.h 

extern int global_shared_variable;

a.c b.c main.c 

#include “shared.h” 
 
int global_shared_variable = -1; 

#include “shared.h” 
 
 

int 
main() 
{ } 
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Alternatively, the definition could be contained in b.c or main.c 
It’s also possible to omit the ‘extern’, in which case the linker rule applies that a 
single strong definition in a.o overrides the weak definition in b.o. However, this is 
not good practice (-Wl,--warn-common would flag it). Some suggested placing 
‘extern int global_shared_variable’ in b.c – this would compile and link, but is 
generally not considered sound programming practice. 
 

b) (4 pts) A “fence” is a technique that is sometimes used to detect out-of-
bounds memory accesses. The idea is to place some ‘fence’ values that 
rarely occur during normal execution before and after each array. Then, 
out-of-bounds accesses can be detected by checking whether the fence 
values were changed. 
Complete the program below to implement this idea to protect array ‘a’ 
which is passed to a buggy update routine that contains out-of-bounds 
accesses. 
 
void 
buggy_update_array(int *array, int n, int delta) 
{ 
    int i; 
    for (i = 0; i <= n; i++) { 
        array[i-1] = array[i] + delta; 
    } 
} 
 
int a[10]; 
 
int main() 
{ 
    buggy_update_array(a, 10, 1); 
} 

 
Knowing that the linker will allocate variables of the same storage class 
consecutively in memory, the program can be completed as follows: 
 

void 
buggy_update_array(int *array, int n, int delta) 
{ 
    int i; 
    for (i = 0; i <= n; i++) { 
        array[i-1] = array[i] + delta; 
    } 
} 
 
int leftfence; 
int a[10]; 
int rightfence; 
 
int main() 
{ 
#define MAGIC 0xdeadbeef; 
    leftfence = rightfence = MAGIC; 
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    buggy_update_array(a, 10, 1); 
    assert (leftfence == MAGIC && rightfence == MAGIC); 
} 
 

 
c) (6 pts) During his recent distinguished lecture at Virginia Tech, Dr. Eugene 

Spafford pointed out that the vast majority of current security exploits 
involve dynamically linked libraries. He proposed to eliminate shared 
libraries. Discuss the merits of this idea! Provide at least 2 distinct 
arguments for or against it; keep your points brief! 

 
Arguments in favor of Spafford’s idea: 
 

• Eliminating shared libraries would remove the potential for attacks in 
which a program’s accesses to OS functionality are intercepted and 
redirected when resolving a program’s dynamic references. For instance, 
on Linux, the linker will check /etc/ld.so.preload for a list of libraries to be 
loaded first when linking a dynamically linked executable. Plus, an 
attacker could simply replace system libraries with their own version, 
affecting all applications. 

 
The counterarguments are the advantages of dynamic linking/shared libraries 
discussed in lecture, including 
 

• Shared libraries allow independent updates of the library code without 
requiring that all binaries referring to it be re-linked 

• Shared libraries save physical memory since library code used by multiple 
processes can be shared 

• Dynamic linking enables runtime extensibility, e.g., plug-ins. 
 

3. Locality (20 pts) 
Consider the following naïve implementation of matrix transpose for large, dense 
matrices: 
 

void inplace_transpose(int matrix[N][N]) 
{ 
    int i, j; 
    for (i = 0; i < N - 1; i++) { 
        for (j = i + 1; j < N; j++) { 
            int tmp = matrix[i][j]; 
            matrix[i][j] = matrix[j][i]; 
            matrix[j][i] = tmp; 
        } 
    } 
} 

 
a) (5 pts) Does this algorithm exhibit temporal locality?  

Briefly say why or why not! 
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i. (2 pts) With respect to code 
 

Yes, it uses loops whose instructions are executed many times. 
 

ii. (3 pts) With respect to data 
 

No, each matrix element is accessed once and only once. (Though less relevant, 
I also accepted ‘yes’ if you pointed out that there is reuse of ‘i' and ‘j’ – but not 
‘tmp’) 
 

b) (5 pts) Does this algorithm exhibit spatial locality?  
Briefly say why or why not! 
 

i. (2 pts) With respect to code 
 

Yes – the executed code is contained in a contiguous section of instructions.  
(The fact that each backward branch in the loop causes a non-contiguous control 
transfer notwithstanding.) 
 

ii. (3 pts) With respect to data 
 

If the matrix is stored in row-major order, as in C, the accesses to matrix[i][j] 
exhibit spatial locality, but the accesses to matrix[j][i] do not. 
 

c) (5 pts) Assume a memory hierarchy with just one level of caching and a 
cache line size of 64 bytes, which can hold 16 ints. How many cache 
misses would you expect per inner loop iteration? 
 

Each loop iteration accesses both matrix[i][j] and matrix[j][i]. If the matrix is large 
enough (so that the distance between &matrix[k][x] and &matrix[k+1][x] is large), 
matrix[j][i] would miss every time, and matrix[i][j] every 16th time – once per cache 
line - thus we would expect 1+1/16=1.0625 cache misses per iteration. 

 
d) (5 pts) In lecture we had discussed blocking as a method to speed up 

dense matrix multiplication. Could blocking be applied to speed up in-
place matrix transposition?  Briefly justify your answer! 
 

Yes. Divide the matrix into small squares that fit in the cache, transpose the 
elements in each square block using a temporary buffer. If the temporary buffer, 
the source block, and the destination block fit into the cache, there will be no 
penalty for the lack of spatial locality because the cache block fetched when 
accessing the b[k][*] will still be in the cache when b[k+1][*] is accessed. This 
description is simplified: in practice, one needs to worry about conflict misses as 
well. This blocking avoids the cache misses due to lack of spatial locality when 
accessing neighboring columns; it does not introduce temporal locality. 
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4. Optimizations (18 pts) 
a) (4 pts) Consider the following C code 

 
void matrix_vector_multiply(int * y, int M[2][2], int * x) 
{ 
    y[0] =  M[0][0] * x[0] + M[0][1] * x[1]; 
    y[1] =  M[1][0] * x[0] + M[1][1] * x[1]; 
} 
 
Suppose you have an infinitely sophisticated compiler and you are using a 
machine with plenty of registers such as x86_64. How many memory load 
instructions and how many memory store instructions would the body of 
this function contain? (Not counting any accesses needed for stack frame 
management or saving callee-saved registers.) 
 

Because x and y could refer to the same vector, we need 8 loads and 2 stores. 
Loads are for M[0][0], M[0][1], x[0], x[1], M[1][0], M[1][1], x[0], and x[1], stores for 
y[0] and y[1]. For example, here is the x86_64 code: 
 

matrix_vector_multiply: 
    movl    4(%rdx), %ecx # load x[1] 
    movl    (%rdx), %eax  # load x[0] 
    imull   4(%rsi), %ecx # load M[0][1] 
    imull   (%rsi), %eax  # load M[0][0] 
    addl    %eax, %ecx 
    movl    %ecx, (%rdi)  # store y[0] 
    movl    4(%rdx), %ecx # load x[1] 
    movl    (%rdx), %eax  # load x[0] 
    imull   12(%rsi), %ecx # load M[1][1] 
    imull   8(%rsi), %eax # load M[1][0] 
    addl    %eax, %ecx 
    movl    %ecx, 4(%rdi) # store y[1] 
    ret 
 

b) (4 pts) Now consider this C function, which is almost identical to the one 
above, except that the matrix M is no longer a nested array:  
 
void matrix_vector_multiply2(int * y, int *M[], int * x) 
{ 
    y[0] =  M[0][0] * x[0] + M[0][1] * x[1]; 
    y[1] =  M[1][0] * x[0] + M[1][1] * x[1]; 
}  
 
How many memory load and store instructions would a compiler emit for 
this function? 
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Here, the address of the first element of an array of pointers is passed to the 
function, which must be dereferenced to obtain M[0] and M[1]. This adds two 
loads, hence 10 loads and 2 stores. 
 

matrix_vector_multiply2: 
    movq    (%rsi), %r8  # load M[0] 
    movl    4(%rdx), %ecx # load x[1] 
    movl    (%rdx), %eax      # load x[0] 
    imull   4(%r8), %ecx  # load M[0][0] 
    imull   (%r8), %eax  # load M[0][1] 
    addl    %eax, %ecx 
    movq    8(%rsi), %rax # load M[1] 
    movl    %ecx, (%rdi)  # store y[0] 
    movl    4(%rax), %ecx # load M[1][1] 
    movl    (%rax), %eax  # load M[1][0] 
    imull   4(%rdx), %ecx # load x[1] 
    imull   (%rdx), %eax  # load x[0] 
    addl    %eax, %ecx 
    movl    %ecx, 4(%rdi) # store y[1] 
    ret 

 
c) (4 pts) The ISO-C99 standard added a keyword ‘restrict’ to the language 

which can be applied to pointer variables. ‘restrict’ says that a given 
pointer is the only means of accessing the data to which it points within 
the scope in which it is declared; no other pointer will refer to the same 
data.  If these assumptions are violated, undefined behavior will result. 
Below, the ‘restrict’ keyword is applied to x and y. 
 
void matrix_vector_multiply_r(int * restrict y, int M[2][2],  
                              int * restrict x) 
{ 
    y[0] =  M[0][0] * x[0] + M[0][1] * x[1]; 
    y[1] =  M[1][0] * x[0] + M[1][1] * x[1]; 
} 
 
How many memory load and store instructions would a sophisticated 
compiler emit for this function? Note that M is again a nested array as in 
part a)! 
 

If x is assumed to not refer to the same location as y – which is what ‘restrict’ 
implies – then we only need 6 loads and 2 stores since x[1] and x[0] do not be 
read from memory again after y[0] is written. 
 

matrix_vector_multiply_r: 
    movl    4(%rdx), %r8d # load x[1] 
    movl    (%rdx), %ecx  # load x[0] 
    movl    %r8d, %eax 
    movl    %ecx, %edx 
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    imull   4(%rsi), %eax # load M[0][1] 
    imull   (%rsi), %edx  # load M[0][0] 
    addl    %edx, %eax 
    movl    %eax, (%rdi)  # store y[0] 
    imull   12(%rsi), %r8d # load M[1][1] 
    imull   8(%rsi), %ecx # load M[1][0] 
    addl    %ecx, %r8d 
    movl    %r8d, 4(%rdi) # store y[1] 
    ret 

  
 

d) (6 pts) Assuming an optimizing compiler, is there always a performance 
cost for declaring many local variables within one function?  If yes, say 
why. If not, explain precisely when there is a cost and when there isn’t! 
 

No, not always. Optimizing compilers perform register allocation. The number of 
declared local variables does not matter unless the lifetime of these local 
variables overlaps. Each register can hold only one local variable at a time, if 
there are more local variables alive at any point in a function than there are 
registers, spilling occurs and a performance penalty is paid. 
 

5. Unix Process Management (20pts) 
a) (14 pts) Consider the following example programs. List all legal outputs 

this program may produce when executed on a Unix system. The output 
consists of strings made up of multiple letters. 

 
// included in both programs 
#include <unistd.h> 
#include <sys/wait.h> 
// W(A) means write(1, “A”, sizeof “A”) 
#define W(x) write(1, #x, sizeof #x) 
 

 
 
Possible Outputs: 

 
int main() 
{ 
    W(A); 
    fork(); 
    W(B); 
    fork(); 
    W(C); 
} 
 

i) 6 pts  
 
Possible outputs are: 
ABBCCCC 
ABCBCCC 
ABCCBCC 
 

 
int main() 
{ 
    W(A); 
    int child = fork(); 
    W(B); 
    if (child) 
        wait(NULL); 

ii) 8 pts 
 
Possible outputs are: 
ABCBC 
ABBCC 
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    W(C); 
} 
 

 
There is a bug in the program: it should be write(1, #x, sizeof #x – 1). The 
program as is outputs a ‘\0’ character, which however does not appear on the 
terminal. 

 
b) (6 pts) Consider the following two programs. Below each program is 

shown the output sent to the terminal when the program is run: 
 
int main() {  
    if (fork()) 
        *(int *)0 = 42; 
} 

int main() {  
    if (!fork()) 
        *(int *)0 = 42; 
} 

Output: 
$ ./crash  
Segmentation fault 
$ 

Output: 
$ ./crash 
$  
 

 
Why is the message “Segmentation fault” displayed for the program on the 
left, but not for the program on the right?  
 

The segmentation fault message is displayed by the shell if a child process is 
terminated with signal 11, SIGSEGV. On the left, where fork() returns not zero, 
the shell’s child is terminated. On the right, the process that is terminated is the 
child process, which is a grandchild of the shell. ‘wait()’ does not allow the shell 
to wait for grandchildren, hence the shell cannot learn that the process 
terminated with a fault, hence no message. 
Note that this behavior occurs independent of whether the scheduler runs the 
parent or the child first after the fork (on a single processor system). 


