
CS 3214 Fall 2010 Final Exam Solutions

1/14

CS 3214 Final Exam Solutions

45 students took the final exam. The table below shows statistics about each
problem, including who graded it. Contact the instructor of your section if you
wish to take a look at your exam.

 P1 P2 P3 P4 P5 P6 Total

Possible 18 18 10 18 20 16 100
Minimum 0 1 4 0 2 0 19
Maximum 16 15 10 18 17 16 72
Median 7 7 6 7 8 8 45
Average 8.2 8.1 5.9 7.0 9.3 8.1 46.7
StDev 4.2 3.8 1.4 4.9 3.6 3.1 13.4
Grader Scott Xiaomo McQuain Puran McQuain Back

Solutions are shown in this style.
Grading comments in this style.

0

2

4

6

8

10

12

14

0‐9 10‐19 20‐29 30‐39 40‐49 50‐59 60‐69 70‐79 80‐89 90‐100

CS 3214 Final Exam Fall 2010
n=45, med=45

CS 3214 Fall 2010 Final Exam Solutions

2/14

1. Multithreading (18 pts)
a) (15 pts) Mutexes and Condition Variables. Exercise 10 asked that you

implement futures, a commonly used abstraction for task parallelism,
backed by a pool of threads. Each of these threads will execute a work
function that processes tasks submitted to the pool. The following 5
examples were submitted by students. Point out what is wrong with them!
To keep the focus of this question on the use of mutexes and condition
variables to implement the monitor abstraction (which was the point of this
exercise), irrelevant details have been omitted and you should assume
they are correctly implemented.

 // here, 'pop' returns the first element
 // of the pool's queue, or NULL if queue
 // is empty
 while (!getShuttingDown(pool)) {
 struct future *ftr = NULL;

 pthread_mutex_lock(&pool->mutex);
 ftr = pop(pool);
 pthread_mutex_unlock(&pool->mutex);

 while (ftr == NULL) {
 pthread_mutex_lock(&pool->mutex);
 ftr = pop(pool);
 pthread_mutex_unlock(&pool->mutex);

 if (getShuttingDown(pool)) {
 return NULL;
 }
 }

 ... process task and signal semaphore ...
 }

i) (3pts)

This attempt employs busy-waiting and does not use condition variables at all.

 while(1)
 {
 pthread_mutex_lock(&(pool->startWorkMutex));
 if (is_empty(pool->jobs))
 {
 pthread_cond_wait(&(pool->startWorkCondition),
 &(pool->startWorkMutex));
 }

 if (!pool->shuttingDown) {
 struct future * next_Job = poll_job(pool->jobs);
 pthread_mutex_unlock(&(pool->startWorkMutex));
 ... process task and signal semaphore ...
 }

CS 3214 Fall 2010 Final Exam Solutions

3/14

 else
 {
 pthread_mutex_unlock(&(pool->startWorkMutex));
 break;
 }
 }

ii) (3 pts)

This attempt uses ‘if’ instead of ‘while’. For condition variables in monitors that
employ Mesa semantics (including pthreads, Java’s and C#’s monitors) the call
to pthread_cond_wait() must always be preceded by a while. There is no
guarantee that the predicate a thread is waiting for is true upon return from
pthread_cond_wait(). Notably, another thread (not the one being signaled) could
have picked the task from the pool’s queue. Note that this can happen even
though pthread_cond_signal wakes up only one thread, for instance if a thread
who has just completed a task acquires the lock earlier than the signaled thread.
(Moreover, the POSIX standard allows pthread_cond_wait() to return spuriously
without any pthread_cond_signal call having happened at all!)

/* Wait for new futures to be enqueued in the thread pool's work queue.
*/
 pthread_mutex_lock(&pool->mutex);
 pthread_cond_wait(&pool->cond, &pool->mutex);
 while (pool->futures != NULL) {
 if (!pool->shutting_down) {
 fut = pool->futures;
 pool->futures = pool->futures->next; // Dequeue future
 pthread_mutex_unlock(&pool->mutex);
 ... process task and signal semaphore ...
 pthread_mutex_lock(&pool->mutex);
 }
 }
 pthread_mutex_unlock(&pool->mutex);

iii) (3 pts)

This attempt uses a condition variable to wait for the first task only, rather than
for every task. Subsequently, the thread will exit if upon completion of a task it
finds the pool’s task queue empty, which means this pool runs out of threads if
there is any period during which no tasks are pending.

 while(true) {
 // Wait for signal then check if shutting down
 pthread_mutex_lock(&tp->mutex);
 pthread_cond_wait(&tp->cond, &tp->mutex);
 shutdown = tp->shutdown;

 if(shutdown)
 break;

CS 3214 Fall 2010 Final Exam Solutions

4/14

 f = remove_future_from task();

 ... process task f ...
 pthread_mutex_unlock(&tp->mutex);
 ... signal f's semaphore ...
 }
 pthread_mutex_unlock(&tp->mutex);

iv) (3 pts)

This attempt does not check any predicate before calling pthread_cond_wait. If
the signal occurred before the thread reached pthread_cond_wait(), it will be lost.
Condition variables, unlike semaphores, don’t store sent signals.

 struct future *current;
 for(;;)
 {
 pthread_mutex_lock(&(pool->lock));

 while(pool->list_size == 0) //if the list is empty, wait
 {
 if(pool->shutdown)
 {
 pthread_mutex_unlock(&(pool->lock));
 pthread_exit(NULL);
 }
 //else wait until not empty
 pthread_mutex_unlock(&(pool->lock));
 pthread_mutex_lock(&(pool->condLock));
 pthread_cond_wait(&(pool->job_available),
 &(pool->condLock));
 pthread_mutex_unlock(&(pool->condLock));
 pthread_mutex_lock(&(pool->lock));
 }
 current = ... get task from queue ...
 pthread_mutex_unlock(&(pool->lock));
 ... process task and signal semaphore ...
 }

v) (3 pts)

This attempt (wrongly) uses a second lock. This means that giving up the pool’s
lock and being added to the job_available condition variable’s queue is no longer
atomic, thus it can lead to lost wakeups if a signal arrives between the two calls.

b) (3 pts) Semaphores. Access to shared variables in multithreaded
programs must be synchronized. Consider the following scenario with 2
threads!

Global definitions and
code executed before

Executed by thread 1 Executed by thread 2

CS 3214 Fall 2010 Final Exam Solutions

5/14

either thread is spawned
void *shared_var;
sem_t sem;

sem_init(&sem, 0, 0);

shared_var=compute();
sem_post(&sem);

sem_wait(&sem);
return shared_var;

Is this program, as presented, without race condition or do the accesses to
‘shared_var’ by the two threads need to be protected with a mutex?
Justify your answer!

No mutex is needed since the semaphore guarantees that the assignment to
shared_var happens before the use in the return statement. (In fact, this is the
pattern exploited by the future_get() implementation in your thread pool!). The
use of sem_post() and sem_wait() also ensures that the store by thread 1 will be
seen by the subsequent load by thread 2, even if they run on different cores.

A wrong answer would be to say that a mutex is not needed because one access
is an assignment/store and the other access is a use/load.

2. Memory Management (18 pts)
The following questions relate to memory management in systems exploiting
virtual memory.

a) (6 pts) Consider the following C program malloc.c:

#include <stdio.h>
#include <stdlib.h>

int
main(int ac, char *av[])
{
 return printf("%p\n", malloc(124));
}

When run multiple times on Linux, the output may be:

$./malloc ; ./malloc ; ./malloc ; ./malloc ; ./malloc
0x901d008
0x953a008
0x89d4008
0x870b008
0x939a008

i. (3 pts) Explain why this program outputs different values every time,

even though it does not read any user input (and does not make use of
any random number functions)!

CS 3214 Fall 2010 Final Exam Solutions

6/14

The different values are explained by address space randomization, a defensive
technique that aims to make overflow attacks more difficult by randomly changing
the virtual addresses at which the heap is located for each run of a program.

ii. (3 pts) Provide a plausible reason for why all numbers end in 008!

Since the heap is a separate segment for the purposes of virtual memory
management (as shown by /proc/*/maps), it is comprised of entire pages. Like
your project 4 allocator, the GNU libc allocator used in Linux must guarantee an
8-byte alignment for each allocated object. Given that the implementation of
free() requires object headers located at a constant offset before the payload, the
first location in a 4KB page that is 8-byte aligned and allows a header to be
placed before the payload is 4KB * n + 0x008. (Note that the page size on IA32 is
0x1000 = 4096 (dec)).

b) (6 pts) Besides throughput, an allocator’s performance can be described
by its utilization metric. In project 4, the utilization score for your allocator
was obtained by measuring the ratio of aggregate payload to overall heap
size at the aggregate payload’s peak. In this question, you should
consider the alternative approach of computing the average size of all free
blocks as a performance measure.

i. (3 pts) How is the average free block size related to an allocator’s
utilization?

Generally, if an allocator suffers from external fragmentation, it is likely that the
free list would contain many small free blocks and few large ones.

ii. (3 pts) Why is the average-free-block-size metric probably not as
relevant as the utilization ratio used in project 4?

The existence of many free blocks does not cause problems per se. They cause
problems only indirectly when future requests are made that can’t be satisfied
from the free list, thus causing the allocator to expand its heap; this effect is
captured by the peak utilization metric.

c) (6 pts) The provided memory allocator in project 4 was a naïve allocator

that grew its heap every time a request from a client arrived, and that
ignored calls to free() altogether. After learning about virtual memory and
page replacement, your teammate proposes the following approach:

Let’s exploit the OS’s ability to manage virtual memory! 64-bit OS are
quickly becoming prevalent – in these systems, virtual addresses are a
practically unlimited resource, relative to the memory allocated by even
long-running applications before they are shut down. Let’s optimize the
approach so that memory is obtained from the OS in larger chunks, and a

CS 3214 Fall 2010 Final Exam Solutions

7/14

pointer is kept to the remaining area in the current chunk. Let’s continue
to not do anything on a free() call – the OS’s page replacement algorithm
will eventually page out those pages, ensuring that they do not consume
actual resources in terms of physical memory.

Will this approach work? If not, where did your team mate go wrong?
Justify your answer!

Although it is true that the OS will likely page out freed pages if they have not
been accessed in a long time, the approach will fail because the OS does not
know that the pages contain data that from the perspective of the user program is
unused. Thus, it will be forced to preserve their content by writing them to swap
space. Unlike virtual addresses, swap space is limited (most administrators
configure it at a small multiple of physical memory).

3. Standard I/O and Unix I/O (10 pts)
Consider the following two versions of a simple file copy program (which provides
similar functionality to /bin/cp):

// Version 1
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>

int
main(int ac, char *av[])
{
 int ifd = open(av[1], O_RDONLY);
 if (ifd == -1) perror("open"), exit(EXIT_FAILURE);
 int ofd = creat(av[2], 0666);
 if (ofd == -1) perror("creat"), exit(EXIT_FAILURE);

 int bread;
 char buf[65536];
 while ((bread = read(ifd, buf, sizeof buf)) > 0)
 if (write(ofd, buf, bread) != bread)
 perror("write"), exit(EXIT_FAILURE);

 return EXIT_SUCCESS;
}

and

// Version 2
#include <stdio.h>
#include <stdlib.h>

int
main(int ac, char *av[])
{

CS 3214 Fall 2010 Final Exam Solutions

8/14

 FILE * ifd = fopen(av[1], "r");
 if (ifd == NULL) perror("fopen"), exit(EXIT_FAILURE);
 FILE * ofd = fopen(av[2], "w");
 if (ofd == NULL) perror("fopen"), exit(EXIT_FAILURE);

 int bread;
 char buf[65536];
 while ((bread = fread(buf, 1, sizeof buf, ifd)) > 0)
 if (fwrite(buf, 1, bread, ofd) != bread)
 perror("fwrite"), exit(EXIT_FAILURE);

 return EXIT_SUCCESS;
}

a) (2 pts) Which of the two versions uses Standard I/O and which version
uses Unix I/O?

Version 1 uses Unix I/O and Version 2 uses Standard I/O.

b) (2 pts) Neither of the two programs closes the file descriptors that were
opened (e.g., there are no calls to close() and/or fclose()). Could this
omission cause either program to run incorrectly (i.e., the file not be
correctly copied)? Check one box!

 Both programs run always correctly despite of this.
 Version 1 runs correctly, version 2 might not.
 Version 2 runs correctly, version 1 might not.
 Neither version runs correctly all the time.

When the program returns from main(), as both versions do, it calls exit(). Upon
exit(), all standard I/O FILE* objects are closed and any buffered data is flushed
to disk. In the Unix I/O version, no user-level buffering is done, so the data has
already reached the kernel and will be written to the destination file.

c) (2 pts) Could the omission of the close/fclose calls cause resource leaks
down the road? Check one box!

 Yes, both programs cause leaks.
 Version 1 might cause leaks, version 2 does not.
 Version 2 might cause leaks, version 1 does not.
 Neither version causes leaks.

Any FILE * objects allocated by standard I/O lie in user space, which like all user-
allocated memory is discarded in its entirety when a process exits. Separately,
the OS closes all of a process’s file descriptors when it exits and deallocates any
data structures the kernel may have kept. This deallocation happens even if a
process is terminated by a signal. Although good programming style demands
that a programmer closes files and/or stdio streams, and doing so is necessary

CS 3214 Fall 2010 Final Exam Solutions

9/14

for any long-running program, it would be unacceptable to have leaks due to
simple programming flaws like this one after a program exits.

d) (4 pts) Assume a system in which system calls are comparatively
expensive, and assume that large files are being copied. Under these
conditions, would either of the two versions run significantly faster than the
other? Justify your answer!

Any performance difference is likely to be marginal. The Unix I/O is already
written in a way that it issues large read() and write() requests so that there is no
need for, or expected benefit from, the buffering performed by standard I/O. The
situation would be different if the Unix I/O version used much smaller buffers or
wrote 1 byte at a time. In addition, the standard buffer size (BUFSIZ) is 8192,
which is smaller than the size used in the example, so it’s likely that fread() and
fwrite() will bypass buffering altogether and simply directly invoke the
read()/write() system calls.

4. sysstatd Diagnostics (18 pts)
In project 5, you implemented a JSON-based web service that reported a Linux
machine’s physical memory and CPU usage, which could be integrated into web
pages. In this question, you are asked to extend this service to implement
additional functionality. To be able to more easily verify that your service reports
meaningful and live data, you should implement additional service URLs that
affect the machine’s CPU and/or physical memory consumption.

CS 3214 Fall 2010 Final Exam Solutions

10/14

The large area is physical
memory dedicated to
program data
(“Anonymous”)

The large area is “Free”
physical memory,
available for immediate
use

The large area is physical
memory that caches file
data (“Cached”)

/anonymous?amount=250000

/free?amount=250000

/cached?amount=250000

The unit in amount is in KB. /anonymous?amount=250000 means, for instance,
that your service should attempt to get the system to devote 250000KB to
anonymous memory. The amount need not be met exactly.

Hint: The value reported by /proc/meminfo represents the current physical memory
usage by all processes running on this machine. Assume on-demand paging and a
global page replacement strategy as in standard Linux.

CS 3214 Fall 2010 Final Exam Solutions

11/14

/load?target=3

(Here, 3 is the desired target value for the load average. Assume the machine is
initially unloaded.)

The service URLs for each effect are shown below. For instance, if your service
is running at kefka:20001, then visiting the URL http://kefka:20001/load?target=3
should produce the change shown above in the widget display. (To avoid
creating lasting resource impact on the machine on which these diagnostic
services execute, all services should have a timeout associated with them after
which their action is undone, if possible. For the purposes of this question, you
need not show how to implement such as timeout.)

Answer the following questions:

a) (4 pts) What changes would you need to make for all 4 proposed services
to integrate them into your existing sysstatd framework? Be specific about
which part of your HTTP protocol processing code you’ll have to change
and how!

The code in which each HTTP request’s path is parsed would need to be
extended to recognize the additional paths “cached”, “anonymous”, “free”, and
“load.” In addition, the query string tokenizer would need to capture the ‘amount’
and ‘target’ keys and extract their values.

For all following parts, you may use either concrete code, or pseudo code, or a
description using specific terms, including necessary API calls as appropriate!

CS 3214 Fall 2010 Final Exam Solutions

12/14

b) (4 pts) Suppose you have identified that the user visited the /anonymous
diagnostics URL. How would you implement this diagnostic service?

Using malloc(amount) (or an equivalent call to mmap() or sbrk()), and then
touching each allocated page will cause the system to devote the desired amount
of anonymous memory. Note that simply calling malloc() will not achieve this
effect because of on-demand allocation of physical memory.

c) (2 pts) Suppose you have identified that the user visited the /free
diagnostics URL. How would you implement this diagnostic service?

Same steps as /anonymous, but performed in a separate child process which
then exits after touching each page. Or, if mmap() was used within the sysstatd
process, munmap(). Note that simply calling free() may or may not immediately
free the physical memory and thus may not have the desired effect.

d) (4 pts) Suppose you have identified that the user visited the /cached
diagnostics URL. How would you implement this diagnostic service?

Read or write data from/to different files until the desired amount is reached. For
instance, the service could traverse the root file system and read() and discard
each file’s content, just to force the OS to bring the file data into physical
memory.

e) (4 pts) Suppose you have identified that the user visited the /load

diagnostics URL. How would you implement this diagnostic service?

Spawn ‘target’ many threads or processes and have each thread execute an
infinite while (1); loop. This ensures that this many threads are either in the
READY or RUNNING state, contributing to the load average.
(Note that spawning a thread and have it sleep is a wrong answer – sleeping
threads are in the BLOCKED state, thus they don’t contribute to a machine’s
load.)

5. Short Questions (20 pts)
a) (4 pts) Creating a file involves executing a system call in the kernel. It is

impossible to implement file creation as a library function without resorting
to system calls. Explain why!

Creating a file involves changes to the file system stored on some underlying
medium, which is a shared resource for which only the kernel provides protection
and manages access. Accessing the I/O hardware also typically requires
privileged instructions that can execute only in kernel mode.

CS 3214 Fall 2010 Final Exam Solutions

13/14

b) (4 pts) Are all recursive functions automatically also thread-safe? Briefly
say why or why not!

No. For instance, recursive functions that access global variables may not be.
Only recursive functions that operate only on their arguments and local variables
are thread-safe; those are said to be reentrant.

c) (4 pts) Why can a Java garbage collector move objects to a different
address in memory whereas a C memory allocator cannot?

Because Java supports only typed references and does not support the
conversion of integers to pointers; thus, all references to an object can be
updated by the virtual machine when an object is moved.

d) (4 pts) How might global climate change be related to the strategy of busy
waiting?

According to prevailing theory, global climate change may be caused by
greenhouse gases such a carbon dioxide, which is created through the burning
of fossil fuels. Busy waiting prevents a thread from moving to the BLOCKED
state, thus preventing the OS from reducing a machine’s power consumption by
placing unused cores in a low-power idle state.

e) (4 pts) Assuming a sufficient supply of cores, would it be feasible and
meaningful for an operating system to parallelize the servicing of page
faults?

No. Page faults cannot generally be predicted and they need to be serviced
synchronously; that is, there is nothing a thread could usefully do while a page
fault is being handled.
(Note that this does not mean that prefetching of pages expected to be accessed
in the future is without benefit. The question asked about servicing a page fault
that has already occurred.)

6. Essay Question: Next Generation Bittorrent (16 pts)

Suppose you are hired by a company to oversee the technical development of
the overlay transport layer for a next generation Bittorrent project. Bittorrent is a
peer to peer (P2P) file sharing network that allows Internet users to exchange
files with little or no centralized control by sending them to each other in a reliable
fashion. The deployment time frame for your product will be 2012 and it is
expected to be in use for several years.

CS 3214 Fall 2010 Final Exam Solutions

14/14

Discuss the implications of the current transition from IPv4 to IPv6, and
simultaneously the still wide-spread use of IPv4 NAT, for your overlay design and
for the development of this application!

Note: This question will be graded both for content/correctness (10 pts) and for
your ability to communicate effectively in writing (6 pts). Your answer should be
well-written, organized, and clear.

No answer is provided. A correct answer would discuss the need for a protocol-
independent implementation of all TCP/IP functions, as well as the complications
arising from the fact that it’s impossible or difficult to initiate direct TCP
connections to machines located behind NAT gateways. This would either
require the users to set up port forwarding, or the use of connection reversal (if
one machine is public) or hole punching techniques. Relay servers would likely
be inappropriate, given the P2P design of Bittorrent.

I awarded little credit for restating the question or for pointing out trivial truths such as “should
support both protocols” without detailing how such support is accomplished.

A common misconception was that IPv4 and IPv6 are compatible with each other or can be
converted into each other. That is not possible; the IPv4 address space is not embedded into the
IPv6 space. Techniques such as 6to4 encapsulation simply allow communication via IPv6 over
IPv4 networks, but not communication across address families.

