
CS 3214 Fall 2012 Final Exam

1/14

CS 3214 Final Exam

This is a closed-book, closed-internet, closed-cell phone and closed-computer
exam. However, you may refer to your 2 sheets of prepared notes. Your exam
should have 14 pages with 5 topics totaling 150 points. You have 120
minutes. Please write your answers in the space provided on the exam paper. If
you unstaple your exam, please put your initials on all pages. You may use the
back of pages if necessary, but please indicate if you do so. Answers will be
graded on correctness and clarity. You will lose points if your solution is more
complicated than necessary or if you provide extraneous, but incorrect
information along with a correct solution.
To be considerate to your fellow students, if you leave early, do so with the least
amount of noise.

Name (printed) ___

I accept the letter and the spirit of the Virginia Tech undergraduate honor code –
I have not given or received aid on this exam.

(signed) ___

Problem Points Score

1 Concurrency 30

2 Synchronization 40

3 Memory 20

4 Communication 40

5 Essay Question:
Modern Software Development 20

 Total 150

CS 3214 Fall 2012 Final Exam

2/14

1. Concurrency (30 points)
Show below is the partial code for a stack of integers.

struct stack_elem {
 int num;
 stack_elem *next;
};

struct stack {
 int size;
 struct_elem *top;
};

stack *stk =
malloc(sizeof(stack));
stk->size = 0;
stk->top = (stack_elem*)0;

void stack_push(stack_elem *s){
 s->next = stk->top;
 stk->top = s;
 stk->size++;
}

stack_elem* stack_pop() {
 (stack_elem*)tp = stack-
>top
 if (stk->size) {
 stk->top = stk->top-
>next;
 stk->size--;
 }
 return tp;
}

a) (6 points) Illustrate in detail how a race condition can occur in the stack_push

function that leads to an incorrect result when the function is executed
concurrently by two threads.

Here are at least two race conditions; other variations are possible; accept any
valid scenario

1. concurrent execution of stk->size++; leading to incorrect size.

T1: load stk->size to register
T2: load stk->size to register
T1: increment register value and store result in stk->size
T2: increment register value and store result in stk->size

2. concurrent execution of: s->next = stk->top; stk->top = s; leading to incorrect
stack contents

T1: executes s->next = stk->top;
T2: executes s->next = stk->top;
T2: executes stk->top = s;
T1: executes stk->top = s;

CS 3214 Fall 2012 Final Exam

3/14

b) (6 points) Assume that all of the stack functions are thread safe. Is the
following function also thread safe? Explain your answer.

void stack_add(stack* stk) {// add top two numbers on stack
 if (stk->size >= 2) { // push the result on the stack
 stack_elem *e = stack_pop();
 stack_elem *f = stack_pop();
 stack_elem *g = malloc(sizeof(stack));
 g->num = e->num+f->num;
 stack_push(g);
 }
}

No, this is not thread safe. Here is one scenario of concurrent execution
leading to an incorrect result.

T1: executes first stack_pop operation
T2: executes first stack_pop operation
T1: executes second stack_pop operation
T2: executes second stack_pop operation
T1: computes sum (second value may not be valid) and does stack_push
T2: computes sum (second value may not be valid) and does stack_push

The additions did not add consecutive stack elements.

c) (6 points) One of the above functions has a memory leak. Explain how the

memory leak occurs and show the changed code that you need to fix the
leak.

The stack_add function has a memory leak because the two elements popped
from the stack are not freed. The change is as follows:

add: free(e) and free(f) somewhere after the computation of the sum.

CS 3214 Fall 2012 Final Exam

4/14

d) (6 points) Three resources are used concurrently. To guarantee mutual
exclusion the access to the resources is protected by locks named LA, LB,
and LC as shown in the code below for three threads

Thread 1 Thread 2 Thread 3

lock(LA);
//use resource A
unlock(LA);
lock (LB);
//use resource B
unlock(LB);

lock(LC);
//use resource C
unlock(LC);
lock (LB);
//use resource B
unlock(LB);

lock(LA);
lock(LB)
lock(LC)
//use resources A,B, and C
unlock(LA);
unlock (LB);
unlock(LC);

 Can this code deadlock? If so explain how. If not explain what prevents deadlock
from occurring.

No, deadlock cannot occur in this example. There can be no circular wait among
these threads. Threads 1 and 2 only contend for ownership of one lock (LB) and
cannot form a cycle. Threads 1 and 3 contend for two locks but acquire their locks
in the same order and cannot form a cycle. Threads 2 and 3 contend over two
locks and in different orders. However, if thread 2 is holding lock LC (blocking
thread 3) it will release this lock before acquiring lock LB. In this case either
thread 2 will acquire lock LB or thread 3 having acquired lock LB will be able to
acquire lock LB.

e) (6 points) In general, name and briefly describe two situations closely related

to deadlock that seriously hamper the progress of one or more threads.

livelock – two processes repeating same operations and blocking each other
indefinite postponement – thread never gets chance to run as writers in a readers-
writers problem when there are always readers present

CS 3214 Fall 2012 Final Exam

5/14

2. Synchronization (40 pts)

a) (10 points) How can you make stack_push function from Question 1 thread

safe and avoid potential race conditions using the synchronization primitives
from the standard Pthreads library. Show all changesneeded in the code.

struct stack {
 pthread_mutex_t mutex;
 …
};

stack->mutex = PTHREAD_MUTEX_INITIALIZER; // in
initialization

void stack_push(stack_elem *s){
 pthread_mutex_lock(stk->mutex);
 …
 pthread_mutex_unlock(stk->mutex);
}

b) (10 points) How can you make stack_add function from Question 1 thread

safe and avoid potential race conditions using the synchronization primitives
from the standard Pthreads library. Show all changes that you make in the
code.

void stack_add(stack* stk) {// add top two numbers on stack
 pthread_mutex_lock(stk->mutex);
 …
 }

 pthread_mutex_unlock(stk->mutex);
}

c) (20 points) Condition Variables. Threads in an application are synchronized

via turn-taking using an integer service number that starts at zero. A thread
requests a service number and at some later time waits for that service
number to be the current service number. When the thread with the current
service number finishes it increments the current service number by one.

i. (4 points) Show the definition of a struct type named service that you would

use to implement turn-taking synchronization using Pthreads.

struct service {
 int current; // current turn
 int next; // to assign turn request
 pthread_mutex_t mutex;
 pthread_cond_t turn;
};

CS 3214 Fall 2012 Final Exam

6/14

ii. (4 points). Show the code needed to implement the function to initialize an

instance of your service structure. The signature of this function is:

 service* service_create(void);

service* service_create(void) {
 service *s = malloc(sizeof(service));
 s->current = 0;
 s->next = 0;
 s->mutex = PTHREAD_MUTEX_INITIALIZER
 s->turn = PTHRAD_COND_INITIALIZER;
}

iii. (4 points) Show the code needed to implement the function executed by a
thread when it gets a service number. Assume that the service struct has
been properly initialized. The signature of this function is:

 int service_get(service *sp);

int service_get(service *sp) {
 pthread_mutex_lock(sp->mutex);
 int myturn = sp->next;
 sp->next++;
 pthread_mutex_unlock(sp->mutex);
 return myturn;

}

CS 3214 Fall 2012 Final Exam

7/14

iv. (4 points) Show the code needed to implement the function executed by a

thread when it waits for a service number. Assume that the service struct
has been properly initialized. The signature of this function is:

 void service_wait(service *sp, int myturn);

void service_wait(service *sp, int myturn) {
 pthread_mutex_lock(sp->mutex);
 while(myturn != sp->current){
 pthread_cond_wait(sp->turn);
 }
 pthread_mutex_unlock(sp->mutex);
}

v. (4 points) Show the code needed to implement the function executed by a

thread when it has finished its turn. The signature of this function is:

 void service_finish(service *sp);

void service_finish(service *sp) {
 pthread_mutex_lock(sp->mutex);
 sp->current++;
 pthread_cond_broadcast(sp->turn);
 pthread_mutex_unlock(sp->mutex);
}

CS 3214 Fall 2012 Final Exam

8/14

3. Memory (20 points)

a) Multiple threads are executing in an address space. Some threads

dynamically allocate and free blocks of memory of size B1 very rapidly. The
other threads dynamically allocate and free blocks of memory of size B2
much more slowly.

i. (3 points) What strategy would you use for your memory allocator and how

would you handle coalescing if B1=B2? Justify your choice.

The simplest strategy is first-fit with no coalescing. Equivalent answers are
also acceptable.

ii. (4 points) What strategy would you use for your memory allocator and how
would you handle coalescing if B2 was much larger than B1 (e.g., B2 was
10kb and B1 was 20 bytes)? Justify your choice.

Use some form of segregated storage first-fit and no coalescing

b) (4 points) What if any is the significant effect that a mode switch has on the

virtual memory mapping for a given process?

The virtual-physical memory mapping is changed so that kernel portions of
the virtual address space become accessible.

CS 3214 Fall 2012 Final Exam

9/14

c) (4 points) What if any is the significant effect that a context switch has on the

virtual memory mapping for a given process?

The virtual-physical memory mapping is changed so that the pages of a
different process are now in effect.

d) (5 points) You are implementing a test to see the performance effects of high

memory demands. You write a program that reads an integer value. N, from
the command line and allocates that many 1Mb blocks of memory. The code
looks something like:

 for(i=0, i<N, i++)
 char* p = malloc(1000000);

When you run your test using larger and larger values for N there is no
discernible difference on the systems memory load. Keeping in mind what
you know about dynamic memory allocation and virtual memory, explain what
happened.

The memory is allocated in virtual memory but not in physical memory
because no access has been made to the allocated addresses.

CS 3214 Fall 2012 Final Exam

10/14

4. Communication (40 pts)

a) (10 points) Shown below is the code for a server’s function to open a

connection with a client using IPV6 as described in the comments. There are
five errors in the function. Identify these errors and indicate how they should
be fixed. Write you answers on the back of this page.

int get_client(int server_port)
{
 // open a TCP/IP socket connection on port server_port
 // return file descriptor for this connection

 int sd=-1, on=1;
 struct sockaddr serveraddr;

 if ((sd = socket(AF_INET6, SOCK_DGRAM, 0)) < 0)
 {
 perror("socket() failed");
 break;
 }

 if (setsockopt(sd, SOL_SOCKET, SO_REUSEADDR,
 (char *)&on,sizeof(on)) < 0)
 {
 perror("setsockopt(SO_REUSEADDR) failed");
 break;
 }

 memset(&serveraddr, 0, sizeof(serveraddr));
 serveraddr.sin6_family = AF_INET6;
 serveraddr.sin6_port = server_port;
 serveraddr.sin6_addr = in6addr_any;

 if (bind(sd,(struct sockaddr *)&serveraddr,
 sizeof(serveraddr)) < 0)
 {
 perror("bind() failed");
 break;
 }

 if ((sdconn = accept(sd, NULL, NULL)) < 0)
 {
 perror("accept() failed");
 break;
 }

 return sd;

}

CS 3214 Fall 2012 Final Exam

11/14

The five errors are:

1. SOCK_DGRAM should be SOCK_STREAM
2. sockaddr should be sockadd_in6
3. server_port should be htons(server_port)
4. the call to listen(int) is missing
5. wrong file descriptor returned

b) A NAT router with the internet address 192.168.5.62 is used to create a

private local network. One of the machines on this private local network has
the internet address 128.119.40.186. A client on this machine opens a
connection to a server on a machine not in the private local network using, in
part, this code:

 int err = getaddrinfo(“www.myserver.com”, “3434”, …)

The client’s port is assigned the port number 2345 by the client’s local host.
Assume that the server www.myserver.com is at internet address
156.173.41.18. An open socket is identified by a quadruple S: (source
address, source port), D: (destination address, destination port). The next port
number to be assigned by the NAT is 6789.

i. (2 points) What is the quadruple for the socket on the client?

 [S: 128.119.40.186,2345, D: 156.173.41.18, 3434]

ii. (2 points) What is the quadruple for the socket on the server?

[S: 156.173.41.18, 3434, D: 192.168.5.62, 6789]

iii. (2 points) What is the relevant table entry in the NAT translation table?

192.168.5.62, 6789 -> 128.119.40.186,2345

c) (9 points) Unix has both pipes and sockets for a TCP connection. Describe
three similarities and three differences between them.

Similarities Differences
accessed via file descriptor
ordered byte stream
buffered
may have short reads
reliable, sequenced

local vs. remote communication
socket has address associated with it
unidirectional vs. bidirectional

 sockets used for accepting connections
 sockets have queue for pending connects

CS 3214 Fall 2012 Final Exam

12/14

d) The esh project allowed a user to create, monitor, and control the execution of

processes on their local machine. This question explores resh, a shell to
create, monitor, and control the execution of remote processes as well.

Version 1 of resh allows a process to be executed on a remote site and retrieve a
single file that contains the output generated on STDOUT of the remote process.
The resh shell communicates with a remote execution daemon (reshd) using the
http 1.1 protocol. The reshd server executes requested programs and determines
the local name of the file produced by the execution. These files are stored in the
directory /remix/output.

i. (4 points) What would the resh HTTP request to execute a program look
like and what would the reshd HTTP response look like for the command:

resh> www.cs.vt.edu/cs3214/ex/cmd

Be detailed in your answers. Use <CRLF> to indicate a pair of \r \l
characters

POST /cs3214/ex/cmd HTTP/1.1<CRLF>
Host: www.cs.vt.edu <CRLF>
Connection: close<CRLF>
<CRLF>

HTTP/1.1 200 OK
Connection: close
Content-Length: 20
Content-Type: text
<CRLF>
/remex/output/file

ii. (3 points) Show the HTTP request for resh to retrieve the file when the

remote execution is done.

Get /remex/output/file HTTP/1.1<CRLF>
Host: www.cs.vt.edu <CRLF>
Connection: close<CRLF>
<CRLF>

CS 3214 Fall 2012 Final Exam

13/14

Version 2 of resh allow the data stream of STDOUT of the remote process to
be the data stream of the STDIN of a local process. For example, the
command line might look like:

 >>resh remote | local

where the pipe symbol "|" denotes the connection of the data streams
between the remote process and the local process.

iii. (8 points) Describe the important steps taken by resh and reshd.

Critical steps are: (1) the exchange of a port number between resh and
reshd; the exchange can be initiated by either side; (2) opening a socet
connection between resh and reshd; (3) reshd forks/execs “remote” with the
socket’s file descriptor as the STDOUT; (4) resh forks/execs “local” with the
socket’s file descriptor as the STDIN

CS 3214 Fall 2012 Final Exam

14/14

5. Essay Question:
The NSF/IEEE TCPP Curriculum (20 points)

In a recent paper [1] the authors wrote that:

“Computer programming has never been easy, and the cost of errors has always
been high. Software failures have claimed lives, and expensive software project
failures are the stuff of industry legend. Over time, however, improvement in
programming languages, development tools, and education have ameliorated the
difficulties of ordinary serial programming. Average programmers circa 2004
were as productive and competent as their counterparts in other engineering
domains. Recent hardware trends, however, threaten to erode software
dependability, programmer productivity, and the industry’s rate of economic value
creation.”

Consider your learning experience in the Introduction to Computer Systems
class. Discuss the above projection! Do you agree or disagree? Justify your
opinion!

Note: This question will be graded both for content/correctness of your technical
points (12 pts) and for your ability to communicate effectively in writing (8 pts).
Your answer should be well-written, organized, and clear. Your answer must
be legible – points will be deducted for parts that cannot be read with
normal effort. Use the back of this page as needed.

[1] Terence Kelly, Yin Wang, Stéphane Lafortune, and Scott Mahlke. 2009. Eliminating
Concurrency Bugs with Control Engineering. Computer 42, 12 (December 2009), 52-60.
DOI=10.1109/MC.2009.391 http://dx.doi.org/10.1109/MC.2009.391

(1) a description of the “recent hardware trends”. An average answer will explain
this to mean the rise of multi-core architectures. A great answer will also mention
factors (density, thermal properties) being the driving forces for this change. A
poor answer will give only vague information.

(2) recognition that architectures are leading to greater use of concurrent
programming. An average answer will note that more cores imply more threads. A
great answer will also note that the cores are growing in number but not in speed.
A poor answer will give only vague description.

(3) statement of the difficulty of concurrent programming. An average answer will
say that concurrent programming requires synchronization which is difficult to
arrange. A great answer will use correct terminology to describe problems of
atomiticy and order violations, the need for mutual exclusion, etc. A poor answer
will not clearly state why concurrent programming is more difficult than
sequential programming.

	1. Concurrency (30 points)
	2. Synchronization (40 pts)
	3. Memory (20 points)
	4. Communication (40 pts)
	5. Essay Question: The NSF/IEEE TCPP Curriculum (20 points)

