
CS 3214 Sample Final Exam (Fall 2009)

1/10

Sample Final Exam (Fall 2009)

Solutions are shown in this style. This exam was given Fall 2009

1. System Calls (16 pts)
a) (12 pts) Consider the following interaction of a user running bash in a terminal. In the

table below, list the following events: (1) process-related system calls (fork, exec, exit,
kill, wait/waitpid) and (2) signals delivered to a process (such as SIGCHLD, SIGINT,
SIGTSTP, SIGTERM).

User input shown in bold, terminal
output in italics

Shell Process Child Process1 Child Process2

$ ls fork()
 exec(“ls”)
 exit()
waitpid()/
SIGCHLD

$ sleep 100 &
[1] 29598

fork()
 exec(“sleep”)

$ sleep 200 &
[2] 29599

fork()
 exec(“sleep”)

$ jobs
[1]- Running sleep 100 &
[2]+ Running sleep 200 &

$ fg %2
sleep 200

waitpid()

User types ^C

 SIGINT
SIGCHLD
+waitpid()

waitpid()

$ fg %1
sleep 100

waitpid()

User types ^Z SIGTSTP

SIGCHLD
+waitpid()

[1]+ Stopped sleep 100

$ kill %1 kill()
 SIGTERM

 SIGCHLD
+waitpid()

$ jobs

CS 3214 Sample Final Exam (Fall 2009)

2/10

[1]+ Terminated sleep 100

Use different rows to express if events are synchronized, i.e., if it is guaranteed that event n
occurs after event m, then event n should be listed in a row below event m. Note that not all
rows/columns will have entries.

b) (4 pts) Explain briefly the key difference between the terms “background process” and

“stopped process”!

A background process is one whose process group is not currently the foreground
process group of its controlling terminal (or a process that has been detached from its
controlling terminal). A background process can perform computation, consume CPU
time, or be blocked while doing I/O or engaging in synchronization with other processes.

A stopped process is a background process that is in the stopped state – it is not
scheduled by the OS onto any CPU, cannot perform computation or I/O until it is moved
out of the stopped state via a SIGCONT signal or terminated.

2. Multithreading (18 pts)
a) (10 pts) Consider a fixed thread pool such as the one you implemented in exercise 11.

Such a thread pool creates a fixed number of threads that process submitted tasks in
FIFO order. Each task (or “callable”) is represented by a C function that receives a
pointer to a custom argument.

/* Data to be passed to callable. */
struct callable_data {
 int number;
 sem_t *next, *previous;
};

/* A callable. */
void *
callable_task(struct callable_data *
callable)
{
 sem_wait(callable->previous);
 printf("Task %d ran.\n",
 callable->number);
 sem_post(callable->next);
 return NULL;
}

int
main(…) {
 …
 const int N = ntasks;
 sem_t s[N + 1];

// …. main continued
 // create N callable tasks
 struct callable_data * callable_data[N];
 for (i = 0; i < N; i++) {
 callable_data[i] = malloc(
 sizeof *callable_data[i]);
 callable_data[i]->number = i;
 callable_data[i]->next = &s[i + 1];
 callable_data[i]->previous = &s[i];
 }

 // submit tasks to thread pool
 for (i = N - 1; i >= 0; i--) {
 printf("Submitting task %d:
 next=%d, previous=%d\n",
 callable_data[i]->number,
 callable_data[i]->next - s,
 callable_data[i]->previous - s
);
 thread_pool_submit(ex,
 (thread_pool_callable_func_t)
 callable_task,
 callable_data[i]);
 }

CS 3214 Sample Final Exam (Fall 2009)

3/10

 // initialize N + 1 semaphores
 for (i = 0; i < N + 1; i++)
 sem_init(&s[i], 0, 0);

 printf("Posting first semaphore\n");
 sem_post(&s[0]);
 sem_wait(&s[N]);
 printf("Done.\n");
}

As in exercise 11, the number of threads and tasks can be varied.

i. (5 pts) Suppose this program is run with 4 threads and 2 tasks. The first three lines
the program outputs are shown below. Describe what output, if any, the program will
produce next. If no output is produced or if the output is not deterministic, state that!

$./threadpool_test 4 2
Submitting task 1: next=2, previous=1
Submitting task 0: next=1, previous=0
Posting first semaphore
Task 0 ran.
Task 1 ran.
Done.

In this example, each task N waits for task N-1 to signal a shared semaphore (“previous”), then
signals a semaphore that is shared with task N+1 (“next”). The main thread signals the
semaphore on which task 0 is waiting, then waits for the last semaphore to be signaled. This is
a classic example of using semaphores to express precedence constraints.

ii. (5 pts) Now suppose the program is run with 4 threads and 5 tasks. Describe what
output, if any, the program will produce next. If no output is produced or if the output
is not deterministic, state that!

$./threadpool_test 4 5
Submitting task 4: next=5, previous=4
Submitting task 3: next=4, previous=3
Submitting task 2: next=3, previous=2
Submitting task 1: next=2, previous=1
Submitting task 0: next=1, previous=0
Posting first semaphore

In this example, deadlock will occur because the tasks are inserted in decreasing order (first
task 4, then task 3, etc.) Task 4 waits for 3, task 3 waits for 2, task 2 for task 1, and task 1
waits for task 0. Since the thread pool, as stated, will handle tasks in FIFO order and since it is
limited to handling 4 tasks simultaneously, task 0 cannot be run until at least one of tasks 1-4
completed. Since these tasks depend on task 0, a deadlock occurs.

b) (8 pts) What output do the following 2 programs produce and why?

#include <pthread.h> #include <pthread.h>

CS 3214 Sample Final Exam (Fall 2009)

4/10

#include <stdio.h>

int counter;

static void * thread_func(void * _tn)
{
 int i;
 for (i = 0; i < 100000; i++)
 counter++;
 return NULL;
}

int
main()
{
 int i, N = 5;
 pthread_t t[N];
 for (i = 0; i < N; i++)
 pthread_create(&t[i], NULL,
 thread_func, NULL);

 for (i = 0; i < N; i++)
 pthread_join(t[i], NULL);

 printf("%d\n", counter);
 return 0;
}

#include <stdio.h>

int counter;

static void * thread_func(void * _tn)
{
 int i;
 for (i = 0; i < 100000; i++)
 counter++;
 return NULL;
}

int
main()
{
 int i, N = 5;
 pthread_t t[N];
 for (i = 0; i < N; i++) {
 pthread_create(&t[i], NULL,
 thread_func, NULL);

 pthread_join(t[i], NULL);
 }

 printf("%d\n", counter);
 return 0;
}

Outputs: (4 pts)

The output is not deterministic – 5 threads
are accessing a shared but unprotected
variable concurrently. A blatant race
condition.

Outputs: (4 pts)

The output is 500000. In this case, the 5
thread do not execute concurrently, but in
sequence. Each thread is started only
after the previous one has exited (and was
joined by the main thread.)

3. Memory Management (16 pts)
a) (4 pts) Consider the following program:

#include <stdlib.h>
#include <stdio.h>

int
main(int ac, char *av)
{
 size_t *p = malloc(1);
 printf("0x%08x\n", p[-1]);
}

CS 3214 Sample Final Exam (Fall 2009)

5/10

Its output, when run under a current version of Linux, is 0x00000011.
Explain the likely reason for this specific output value!

The most likely reason is that the GNU C library’s memory allocator uses Knuth’s boundary tag
method. The boundary tag must be located at a fixed offset from the payload (here: -
sizeof(size_t) bytes). 0x00000011 may encode the size of this block and perhaps the status of
this block or the preceding block. Likely, a 16-byte block (size = 0x10) was used to satisfy this
allocation request.

b) (8 pts) Consider a dynamic storage allocator like the one you implemented in project 4.
Consider the following sequence of allocation requests Ai(size) and matching free
requests F(i):

A1 (100)
A2 (200)
A3 (100)
A4 (200)
….
Ai (100)
Ai+1 (200)
…
F(1)
F(3)
F(5)
…
F(2*i + 1)
….

 AM(300)

AM+1(300)
AM+2(300)
…
AM+N (300)

i. (4 pts) What performance would you expect if a single, explicit free list is used for

this trace, and why?

This workload alternately allocates many small (100) and large (200) byte chunks, then frees
all small chunks. Afterwards, the single free list will contain M/2 free 100 byte chunks. This
large list must be traversed for each of the following N requests only to find that no free block
is large enough to satisfy the 300 byte allocation requests. This results in an extraordinary
amount of runtime spent traversing the single free list to find a suitable block.

ii. (4 pts) Suggest a method to improve the performance of the allocator for this
trace!

Repeats M times, for large M

Repeats M/2 times

Repeats N times for large N

Allocates 100 bytes

Allocates 200 bytes

Frees first allocated block

CS 3214 Sample Final Exam (Fall 2009)

6/10

Key is avoiding to scan the long free list of 100 bytes block to check if any of them is large
enough to hold 300 bytes. This could be accomplished by using any segregated scheme in
which 100 and 300 fall in different size classes.

c) (4 pts) Based on what you learned about explicit dynamic storage management (i.e.,
using malloc()/free() or equivalent functions) and automatic storage management (as
used in Java, via new and garbage collection), would you agree or disagree with the
statement that “a long-running program using garbage collection can outperform a
version of the same program using explicit memory management?”
Justify your answer!

Yes, it is definitely possible for programs using garbage collection to outperform those using
explicit memory management. This is particularly true if large numbers of temporary, short-
lived objects in the nursery of a generational collector are created, which a garbage collector
often can summarily discard, whereas an explicit collector will have to handle each such object
individually, updating free lists and performing coalescing as necessary. In addition, the ability
of most automatic memory management schemes to compact objects can lead to more
efficient allocators since free lists don’t have to be searched for free objects. Lastly, garbage
collection can be more easily parallelized, something more difficult to do in explicit schemes.

4. Virtual Memory (16 pts)
a) (6 pts) Application programmers rarely notice the existence of virtual memory. As is

stated in Chapter 10 of the textbook, virtual memory works “silently and automatically,
without any intervention from the application programmer.” Give 2 examples of such
silent and automatic virtual memory functionality!

Examples of such functionality includes:

• On-demand loading of executables (bring in code as a program executes it)
• Automatic stack growth (adding stack page as a program accesses them)
• Paging (moving program data to and from disk as needed)
• Caching of file data (whether or not mmap() is used)
• Protecting a process’s data from unauthorized access by other processes

b) (4 pts) Do you agree or disagree with the following statement?

“The OS guarantees that a user program can make efficient use of all memory allocated
by malloc().”
Justify your answer, stating your assumptions if necessary!

No. Memory allocated with malloc() refers to virtual pages that may or may not be backed by
physical memory. The OS may decide to evict pages, causing a performance penalty on
subsequent accesses that bring those pages back into memory. A program’s accesses to
memory may cause thrashing if the working set (the subset of pages accessed in some recent

CS 3214 Sample Final Exam (Fall 2009)

7/10

period) grows beyond what can be held in physical memory, in which case memory accesses
slow down by an order of magnitude (the speed of the disk).

Moreover, as I had demonstrated in class, Linux does not even check if there’s enough
physical memory + swap space system wide to hold all data that a user program would store in
the malloc()’d space. It may even be the case that the OS decides to terminate a process if too
many processes start using all virtual addresses obtained via malloc(). Even systems such
BSD or Solaris that use more conservative policies when deciding whether to grant virtual
address requests do not guarantee effective use – thrashing may occur there as well if the
frequence with which data is paged in/out grows.

c) (3 pts) Name 1 purpose of the mmap() system call!

mmap() maps a file’s data into the address space of a process, allowing the file data to be
accessed like conventional memory.

mmap() can also be used to create anonymous regions of virtual address space that is backed
by swap space rather than a specific file. This facility is used by malloc() to allocate large
chunks of heap memory (typically, for malloc() with size >= 256K).

d) (3 pts) A virtual memory system can be viewed as a cache in which physical memory
holds some portion of a larger set of data that is stored on disk. This cache is fully
associative.
Explain in one sentence what “fully associative” means in this context!

“Fully associative” means that every physical page frame can hold the data of any virtual page.
In other words, there are no restrictions on where to place program or file data in physical
memory.

5. Networking (18 pts)
a) (8 pts) The Java package java.net provides a number of classes that expose the BSD

socket API in Java. The classes rely on implementations in C contained in native
libraries. Based on the documentation of the classes and based on your knowledge of
networking, sketch the implementation of the following methods/constructors! Provide
all specific C functions you would find in the actual implementation!

package java.net;
class Socket {

/** Creates a stream socket and connects it to
 the specified port number on the named host. */
public Socket(String host, int port)
 throws UnknownHostException, IOException {

 /* insert part i) here (4 pts) */
 /* these are not the actual calls to these
 functions, just a sketch */
 s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 /* alternatively, gethostbyname() can be used */
 getaddrinfo(host, port, &addr);

CS 3214 Sample Final Exam (Fall 2009)

8/10

 connect(s, &addr, ..)
}

 }

 class ServerSocket {

/** Creates a server socket and binds it to the specified local port
number, with the specified backlog. A port number of 0 creates a
socket on any free port.

The maximum queue length for incoming connection indications (a
request to connect) is set to the backlog parameter. If a connection
indication arrives when the queue is full, the connection is
refused. */
public ServerSocket(int port, int backlog) throws IOException {
 /* insert part ii) here (4 pts) */

 /* these are not the actual calls to these
 functions, just a sketch to provide the essence */
 s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 // alternatively, getaddrinfo can be used
 addr.sin_addr = INADDR_ANY;
 addr.port = htons(port);
 bind(s, &addr, ..)
 listen(s, backlog);

}
 }

CS 3214 Sample Final Exam (Fall 2009)

9/10

b) (10 pts) Consider the web service in project 5, which supported multiple clients and

persistent HTTP/1.1 connections (if you didn’t implement support for multiple clients
and/or persistent connections, answer the question as if you had). In this question, you
are asked to consider the performance of your service as the number of connected
clients and the frequency with which they issue HTTP requests changes. Provide a
chart with the performance curve you would expect, and provide a short justification.
State your assumptions, or provide details of your implementation, as necessary!

i. (5 pts) First, consider what happens as the frequency of requests increases
(without an excessive number of simultaneous clients):

 Justification:

For the suggested implementation (which spawns one thread per connection), throughput
should increase as the request frequency increases, up to a maximum that is determined by
the next bottleneck encountered. For the specific web service you implemented (which
produces its content entirely in memory, and requires a few system calls to retrieve the
necessary information from the kernel), it’s likely that the bottleneck will be the speed of the
outgoing network link, so its bandwidth will determine the maximum. It’s also likely that you’ll
stay at this maximum and do not experience a drop-off – the maximum frequency with which
clients can issue requests would be back-to-back.

ii. (5 pts) Second, consider what happens as the number of clients increases:

Justification:

Assuming again a one-thread per client implementation, you would see similar increase with
an increase in the number of clients, but the fact that you’re creating new threads for each
connection will likely lead to a drop-off in throughput beyond a certain number of clients, unless
more sophisticated resource management methods are used.

Request Frequency

Overall
Throughput

Number of clients

Overall
Throughput

CS 3214 Sample Final Exam (Fall 2009)

10/10

6. Essay Question: Virtualization Trade-Offs (16 pts)

Consider the spectrum of multiprogramming arrangements ranging from multi-threaded, single-
process applications on one end and dedicated Type I hypervisors that can support multiple
guest operating systems on the other end! Describe this spectrum and outline how moving
along the spectrum changes which hardware resources are abstracted or virtualized! Explain
the trade-offs involved, and describe using examples which characteristics of a given
application scenario influences the choice of multiprogramming or virtualization model!

Note: This question will be graded both for content/correctness (10 pts) and for your ability to
communicate effectively in writing (6 pts). Make sure you define the spectrum and the involved
trade-off clearly and elaborate on its meaning and consequences. Your answer should be well-
written, organized, and clear.

No answer provided for this question.

In grading this question, I looked for your ability to recognize that multi-threaded programs, single-threaded
programs, Type II and Type I hypervisors are points in a design space that provide different degrees of resource
virtualization and separation. A common mistake was to simply relay implementation details about virtualization,
rather than discussing the trade-offs in choosing a point in the spectrum. Many students failed to relate their
discussion to application scenarios.

