
Project 2: User Programs

Presented by

Min Li
26 Feb 2009

2

Till now …

 All code part of Pintos Kernel

 Code compiled directly with the kernel
 This required that the tests call some functions

whose interface should remain unmodified

 From now on, run user programs on top of
kernel
 Freedom to modify the kernel to make the

user programs work

3

Why Project 2 is not Project 1?

Timer
Interrupts

Other
IRQs

User Programs

Kernel

int 0x30 Exceptions

Project 2
Tests

Project 1
Tests

lib/user/syscall.c

filesystem

syscall layer exc handling

4

Using the File system

 May need to interact with file system
 Do not modify the file system!

 Certain limitations (till Project 4)
 No internal synchronization
 Fixed file size
 No subdirectories
 File names limited to 14 chars
 System crash might corrupt the file system

 Files to take a look at: ‘filesys.h’ & ‘file.h’

5

Some commands
 Creating a simulated disk

 pintos-mkdisk filesys.dsk --filesys-size=2

 Formatting the disk
 pintos -f –q
 This will only work after your kernel is built !

 Copying the program into the disk
 pintos -p ../../examples/echo -a echo -- -q

 Running the program
 pintos -q run ’echo x’
 Single command:

 pintos --fs-disk=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

 $ make check – Builds the disk automatically
 Copy&paste the commands make check does!

6

Various directories

 Few user programs:
 src/examples

 Relevant files:
 userprog/

 Other files:
 threads/, filesys/

7

Requirements

 Process Termination Messages
 Argument PassingArgument Passing
 System callsSystem calls
 Deny writes to executables

8

Process Termination

 Process Terminates
 printf ("%s: exit(%d)\n",...);
 for eg: args-single: exit(0)

 Do not print any other message!

Program
name

Return Code

9

Argument Passing

 Pintos currently lacks
argument passing. You
Implement it!

 Change *esp = PHYS_BASE
to *esp = PHYS_BASE – 12
in setup_stack() to get
started

 Change process_execute() in
process.c to process multiple
arguments

 Could limit the arguments to
fit in a page(4 kb)

 String Parsing: strtok_r() in
lib/string.h

pgm.c
main(int argc,

char *argv[]) {
…

}
$ pintos run ‘pgm alpha beta’
argc = 3
argv[0] = “pgm”
argv[1] = “alpha”
argv[2] = “beta”

Example taken from Abdelmounaam Rezgui’s presentation

10

Memory layout

User stack

Uninitialized data segment

(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows

downward

Grows

upward

4GB
Kernel

Virtual

Memory

User

Virtual

Memory

0x 08048000

Invalid Pointer Area

(for User Programs)

PHYS_BASE = 3GB

Figure taken from Abdelmounaam Rezgui’s presentation

11

Setting up the Stack

How to setup the stack for the program - /bin/ls –l foo bar

12

Setting up the Stack… Contd
bffffffc0 00 00 00 00 | |

bffffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bffffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bfffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

13

Synchronization

 Synchronization between parent and
children processes
 Ensuring child process Loading new

executables successfully

14

Requirements

 Process Termination Messages
 Argument PassingArgument Passing
 System callsSystem calls
 Deny writes to executables

15

System Calls

 Pintos lacks support for
system calls currently!

 Implement the system call
handler in userprog/syscall.c

 System call numbers
defined in lib/syscall-nr.h

 Process Control: exit, exec,
wait

 File system: create, remove,
open, filesize, read, write,
seek, tell, close

 Others: halt

static void
syscall_handler (struct intr_frame *f
UNUSED)
{
 printf ("system call!\n");
 thread_exit ();
}

Syscall handler currently …

16

Continued…

 A system call has:
 System call number
 (possibly) arguments

 When syscall_handler() gets control:

 System calls that return
a value () must modify
f->eax

Sys. Call #

Arg #2

Arg #1

.

.

.

Caller’s User Stack

syscall_handler (struct intr_frame *f) {

f->esp

….

f->eax = … ;

}

Figure taken from Abdelmounaam Rezgui’s presentation

17

System calls – File system

 Decide on how to implement the file descriptors
 O(n) data structures… perfectly fine!

 Access granularity is the entire file system
 Have 1 global lock!

 write() – fd 1 writes to console
 use putbuf() to write entire buffer to console

 read() – fd 0 reads from console
 use input_getc() to get input from keyboard

 Implement the rest of the system calls

18

System calls – Process Control

 wait(pid) – Waits for process pid
to die and returns the status pid
returned from exit

 Returns -1 if
 pid was terminated by the

kernel
 pid does not refer to child of the

calling thread
 wait() has already been called

for the given pid

 exec(cmd) – runs the executable
whose name is given in
command line
 returns -1 if the program cannot

be loaded

 exit(status) – terminates the
current program, returns status
 status of 0 indicates success,

non zero otherwise

Parent:
exec()

Parent:
wait()

Parent
process
executes

Child
process
executes

Child
process

exits

OS notifies

Figure taken and modified from Dr. Back’s lecture – CS3204 - Fall 2006

19

Process Control: wait

 Implement process_wait() in
process.c

 Then, implement wait() using
process_wait()

 Cond variables and/or
semaphores will help
 Think about what

semaphores may be used
for and how they must be
initialized

 Some Conditions to take care!
 Parent may or may not wait

for its child
 Parent may call wait() after

child terminates!

main() {

int i; pid_t p;

p = exec(“pgm a b”);

// i = wait (p);

}

int
process_wait (tid_t
child_tid UNUSED)
{
 return -1;
}

20

Memory Access

 Invalid pointers must be rejected. Why?
 Kernel has access to all of physical memory including

that of other processes
 Kernel like user process would fault when it tries to

access unmapped addresses

 User process cannot access kernel virtual
memory

 User Process after it has entered the kernel can
access kernel virtual memory and user virtual
memory

 How to handle invalid memory access?

21

Memory Access (contd’)

 Two methods to handle invalid memory access
 Verify the validity of user provided pointer and then

dereference it
 Look at functions in userprog/pagedir.c,

threads/vaddr.h
 Strongly recommended!

 Check if user pointer is below PHYS_BASE and
dereference it
 Could cause page fault
 Handle the page fault by modifying the page_fault()

code in userprog/exception.c
 Make sure that resources are not leaked

22

Some Issues to look at…

 Check the validity of the system call
parameters

 Every single location should be checked for
validity before accessing it. For e.g. not only
f->esp, but also f->esp +1, f->esp+2 and
`f->esp+3 should be checked

 Read system call parameters into kernel
memory (except for long buffers)
 copy_in function recommended!

23

Denying writes to Executables

 Use file_deny_write() to prevent writes
to an open file

 Use file_allow_write() to re enable write
 Closing a file will automatically re enable

writes

24

Suggested Order of Implementation

 Change *esp = PHYS_BASE to *esp =
PHYS_BASE – 12 to get started

 Implement the system call infrastructure
 Change process_wait() to a infinite loop to

prevent pintos getting powered off before the
process gets executed

 Implement exit system call
 Implement write system call
 Start making other changes

25

Misc

 Deadline: March 23rd , 11:59 pm
 Do not forget the design document

 Must be done individually

 Good Luck!

