
Pintos: Threads Project

Slides by: Vijay Kumar

Updated for Fall 08 by Godmar Back

Updated for Spring 09 by Peter Radics

Introduction to Pintos

 Simple OS for the 80x86 architecture

 Capable of running on real hardware

 We use bochs, qemu to run Pintos

 Provided implementation supports kernel

threads, user programs and file system

 In the projects, strengthen support for these

+ implement support for virtual memory

Development Environment

 Log on to the Linux cluster remotely using SSH

ssh –Y yourlogin@rlogin.cs.vt.edu (for trusted X11 forwarding)

 Need ssh client

 X11 server preferable, but not absolutely needed

 Use CVS

- for managing and merging code written by the team

members

- keeping track of multiple versions of files

CVS Setup

 Start by choosing a code keeper for your group

 Keeper creates repository on „ap2‟

 Summary of commands to setup CVS
ssh ap2

cd /shared/cs3204

mkdir Proj-keeper_pid

setfacl --set u::rwx,g::---,o::--- Proj-keeper_pid

for all other group members do:

setfacl -m u:member-pid:rwx Proj-keeper_pid

setfacl -d --set u::rwx,g::---,o::--- Proj-keeper_pid

for all group members, including the keeper, do:

setfacl -d -m u:member_pid:rwx Proj-keeper_pid

cvs -d /shared/cs3204/Proj-keeper_pid init

cd /home/courses/cs3204/pintos/pintos

cvs -d /shared/cs3204/Proj-keeper_pid import -m "Imported sources" pintos foobar start

Using CVS

ap2.cs.vt.edu containing

repository

import

checkout

& update

commit

Development machine

in McB124

contains “working directory”

Other useful CVS commands

- diff

- add

- remove

- update

CVS Jargon

 “Do an update”

 “Pull the latest”

 “Commit your stuff”

 “Push your changes”

 “Diff against the HEAD”

 “Diff against BASE”

 “outstanding diffs?”

Bring your working directory in sync with the

CVS repository to pick up and integrate changes

other team members may have made.

Upload your change to the CVS repository,

allowing others to see them. May create a

new revision if there were changes.

Compare your working version to the version last

checked in by any team member.

Compare your working version to the version

you last checked out. Any changes you‟ve made

are “outstanding” – group members can‟t see

them yet.

cvs –nq update -d

 cvs update – download

latest changes from

repository and merge

into working copy

 „-n‟ show me what‟d

do, don‟t do it

 „-d‟ pick up additional

subdirectories (not

done by default)

 Outputs:

 (nothing) – means you are up-
to-date

 P or U – means there‟s a
newer version

 M – means you have
outstanding diffs

 C – means there‟s a newer
version and you have
outstanding diffs and they
can‟t be reconciled

 ? – this file is not part of the
repository

Getting started with Pintos

 Set env variable CVS_RSH to /usr/bin/ssh
export CVS_RSH=/usr/bin/ssh

If you don’t, it will assume “rsh” which is not a supported service. Connection failures or timeouts
will result.

 Check out a copy of the repository to directory „dir‟
cvs -d :ext:your_pid@ap2.cs.vt.edu:/shared/cs3204/Proj-keeper_pid checkout -d dir pintos

 Add ~cs3204/bin to path add to .bash_profile
export PATH=~cs3204/bin:$PATH

 Build pintos
cd dir/src/threads

make

cd build

pintos run alarm-multiple

Project 1 Overview

 Extend the functionality of a minimally

functional thread system

 Implement

- Alarm Clock

- Priority Scheduling

- Including priority inheritance

- Advanced Scheduler

Pintos Thread System

struct threadstruct thread
{

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all-threads list.*/
/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

You add more fields here as you need them.

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

Pintos Thread System (contd…)

 Read threads/thread.c and threads/synch.c to

understand

- How the switching between threads occur

- How the provided scheduler works

- How the various synchronizations primitives

work

Alarm Clock

 Reimplement timer_sleep() in devices/timer.c
without busy waiting

/* Suspends execution for approximately TICKS timer ticks. */

void timer_sleep (int64_t ticks){

int64_t start = timer_ticks ();

ASSERT (intr_get_level () == INTR_ON);

while (timer_elapsed (start) < ticks)

thread_yield ();

}

 Implementation details

- Remove thread from ready list and put it back after
sufficient ticks have elapsed

Priority Scheduler

 Ready thread with highest priority gets the processor

 When a thread is added to the ready list that has a higher
priority than the currently running thread, immediately yield
the processor to the new thread

 When threads are waiting for a lock, semaphore or a
condition variable, the highest priority waiting thread should
be woken up first

 Implementation details
- compare priority of the thread being added to the ready list with that

of the running thread

- select next thread to run based on priorities

- compare priorities of waiting threads when releasing locks,
semaphores, condition variables

Priority Based Scheduling

MIN

MAX

H
ig

h
e
r

P
ri
o
ri
ty

2

3

6

Only threads with the highest priority run

If more than one, round-robin

2/9/2009 CS 3204 Fall 2007 15

Using thread_yield() to implement

preemption
 Current thread (“RUNNING”) is moved to

READY state, added to READY list.

 Then scheduler is invoked. Picks a new READY
thread from READY list.

 Case a): there‟s only 1 READY thread. Thread is
rescheduled right away

 Case b): there are other READY thread(s)
 b.1) another thread has higher priority – it is

scheduled

 b.2) another thread has same priority – it is
scheduled provided the previously running thread
was inserted in tail of ready list.

 “thread_yield()” is a call you can use whenever you
identify a need to preempt current thread.

 Exception: inside an interrupt handler, use
“intr_yield_on_return()” instead

RUNNING

READYBLOCKED

Process

must wait

for event

Event

arrived

Scheduler

picks

process

Process

preempted

Priority Inversion

 Strict priority scheduling can lead to a phenomenon called
“priority inversion”

 Supplemental reading:
 What really happened on the Mars Pathfinder? [comp.risks]

 Consider the following example where
prio(H) > prio(M) > prio(L)
H needs a lock currently held by L, so H blocks

M that was already on the ready list gets the processor before L

H indirectly waits for M

 (on Path Finder, a watchdog timer noticed that H failed to run for
some time, and continuously reset the system)

http://www.cs.berkeley.edu/~brewer/cs262/PriorityInversion.html

Priority Donation

 When a high priority thread H waits on a lock

held by a lower priority thread L, donate H‟s

priority to L and recall the donation once L

releases the lock

 Implement priority donation for locks

 Handle the cases of multiple donations and

nested donations

Multiple Priority Donations:

Example

lock_acquire (&a);

lock_acquire (&b);

thread_create ("a", PRI_DEFAULT + 1, a_thread_func, &a);

msg ("Main thread should have priority %d. Actual priority:

%d.", PRI_DEFAULT + 1, thread_get_priority ());

thread_create ("b", PRI_DEFAULT + 2, b_thread_func, &b);

msg ("Main thread should have priority %d. Actual priority:

%d.", PRI_DEFAULT + 2, thread_get_priority ());

Low Priority thread
static void a_thread_func (void *lock_)

{

struct lock *lock = lock_;

lock_acquire (lock);

msg ("Thread a acquired lock a.");

lock_release (lock);

msg ("Thread a finished.");
}

Medium Priority thread

static void b_thread_func (void *lock_)

{

struct lock *lock = lock_;

lock_acquire (lock);

msg ("Thread b acquired lock b.");

lock_release (lock);

msg ("Thread b finished.");

}

High Priority thread

Low

Medium

High via „b‟

via „a‟

Nested Priority Donations:

Example

lock_acquire (&a);

locks.a = &a;

locks.b = &b;

thread_create ("medium", PRI_DEFAULT + 1, m_thread_func, &locks);

msg ("Low thread should have priority %d. Actual priority: %d.",

PRI_DEFAULT + 1, thread_get_priority ());

thread_create ("high", PRI_DEFAULT + 2, h_thread_func, &b);

msg ("Low thread should have priority %d. Actual priority: %d.",

PRI_DEFAULT + 2, thread_get_priority ());

Low Priority thread static void m_thread_func (void *locks_)

{

struct locks *locks = locks_;

lock_acquire (locks->b);

lock_acquire (locks->a);

msg ("Medium thread should have priority %d.

Actual priority: %d.", PRI_DEFAULT + 2,

thread_get_priority ());

…}

Medium Priority thread

static void h_thread_func (void *lock_)

{

struct lock *lock = lock_;

lock_acquire (lock);

…}

High Priority thread

LowMediumHigh
via „b‟ via „a‟

Advanced Scheduler

 Implement Multi Level Feedback Queue Scheduler

 Priority donation not needed in the advanced scheduler –
two implementations are not required to coexist
 Only one is active at a time

 Advanced Scheduler must be chosen only if „–mlfqs‟ kernel
option is specified

 Read section on 4.4 BSD Scheduler in the Pintos manual for
detailed information

 Some of the parameters are real numbers and calculations
involving them have to be simulated using integers.
 Write a fixed-point layer (header file)

Typesafe Fixed-Point Layer

typedef struct

{

double re;

double im;

} complex_t;

static inline complex_t

complex_add(complex_t x, complex_t y)

{

return (complex_t){ x.re + y.re, x.im + y.im };

}

static inline double

complex_real(complex_t x)

{

return x.re;

}

static inline double

complex_imaginary(complex_t x)

{

return x.im;

}

static inline double

complex_abs(complex_t x)

{

return sqrt(x.re * x.re + x.im * x.im);

}

Suggested Order

 Alarm Clock

- easier to implement compared to the other parts

- other parts not dependent on this

 Priority Scheduler

- needed for implementing Priority Donation and
Advanced Scheduler

 Priority Donation | Advanced Scheduler

- these two parts are independent of each other

- can be implemented in any order but only after Priority
Scheduler is ready

Debugging your code

 printf, ASSERT, backtraces, gdb

 Running pintos under gdb
- Invoke pintos with the gdb option

pintos --gdb -- run testname

- On another terminal invoke gdb

pintos-gdb kernel.o

- Issue the command

debugpintos

- All the usual gdb commands can be used: step, next,
print, continue, break, clear etc

- Use the pintos debugging macros described in manual

Tips

 Read the relevant parts of the Pintos manual

 Read the comments in the source files to understand
what a function does and what its prerequisites are

 Be careful with synchronization primitives
- disable interrupts only when absolutely needed

- use locks, semaphores and condition variables instead

 Beware of the consequences of the changes you
introduce

- might affect the code that gets executed before the boot
time messages are displayed, causing the system to reboot
or not boot at all

Tips (contd…)

 Include ASSERTs to make sure that your code

works the way you want it to

 Integrate your team‟s code often to avoid surprises

 Use gdb to debug

 Make changes to the test files, if needed

 Test using qemu simulator and the –j option with

bochs (introduces variability whereas default options

run in reproducibility mode)

Grading & Deadline

 Tests – 50%

 All group members get the same grade

 Design – 50%

- data structures, algorithms, synchronization, rationale and
coding standards

- Each group member will submit those individually: you
can discuss them in the group, and ask each other
questions – but must create write-up individually.
Instructions will be posted on the website.

 Due Feb 23, 2009 by 11:59pm

Good Luck!

